Search results for "Inflammation."

showing 10 items of 2627 documents

Phytocystatin CsinCPI-2 Reduces Osteoclastogenesis and Alveolar Bone Loss

2021

Made available in DSpace on 2022-04-28T19:42:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2022-02-01 Periodontal disease (PD) is a polymicrobial chronic inflammatory condition of the supporting tissues around the teeth, leading to the destruction of surrounding connective tissue. During the progression of PD, osteoclasts play a crucial role in the resorption of alveolar bone that eventually leads to the loss of teeth if the PD is left untreated. Therefore, the development of antiresorptive therapies targeting bone-resorbing cells will significantly benefit the treatment of PD. Here, we demonstrate the inhibitory effect of CsinCPI-2, a novel cysteine peptidase inhibitor from the oran…

0301 basic medicineAlveolar Bone LossConnective tissueOsteoclastsInflammationBone resorption03 medical and health sciencesMice0302 clinical medicineOsteoclastOsteogenesismedicineAnimalsProtease InhibitorsBone ResorptionPeriodontitisGeneral DentistryperiodontitisDental alveolusPeriodontitisChemistryRANK LigandCell Differentiation030206 dentistrymedicine.diseaseCystatinsResorption030104 developmental biologymedicine.anatomical_structureosteoclastsinflammationCancer researchBone marrowmedicine.symptombone resorptionperiodontal diseasescystatins
researchProduct

The Role of Osteoprotegerin and Its Ligands in Vascular Function

2019

International audience; The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular comp…

0301 basic medicineAngiogenesismedicine.medical_treatmentReview030204 cardiovascular system & hematologyLigandslcsh:ChemistryTNF-Related Apoptosis-Inducing Ligand0302 clinical medicineReceptorlcsh:QH301-705.5Cellular SenescenceSpectroscopyReceptor Activator of Nuclear Factor-kappa BbiologyChemistryvascular diseaseGeneral MedicineComputer Science ApplicationsProtein Transportmedicine.anatomical_structureCytokineRANKLTumor necrosis factor alphaDisease Susceptibilitymedicine.symptomProtein BindingSignal Transductionmusculoskeletal diseasesProteasome Endopeptidase ComplexEndotheliumendotheliumNeovascularization PhysiologicInflammationCatalysisInorganic ChemistryStructure-Activity Relationship03 medical and health sciencesOsteoprotegerin[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyMyocardiumRANK LigandOrganic ChemistryEndothelial Cells030104 developmental biologylcsh:Biology (General)lcsh:QD1-999osteoprotegerinOPG/RANKL/RANKCancer researchbiology.proteinBlood VesselsBiomarkers
researchProduct

Role of Regular Physical Activity in Neuroprotection against Acute Ischemia

2020

One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function followi…

0301 basic medicineAngiogenesismyokinesphysical activityReviewneurotrophinsAntioxidantsBrain Ischemialcsh:Chemistry0302 clinical medicineNeurotrophic factorsneuronal recoverylcsh:QH301-705.5SpectroscopybiologyGeneral MedicineNeuroprotectionComputer Science ApplicationsAcute DiseaseNeurotrophinmedicine.symptomNeurotrophinTraumatic brain injuryIschemiaInflammationNeuroprotectionCatalysisInorganic Chemistry03 medical and health sciencesHormesisMyokineMyokinemedicineischemic strokeAnimalsHumansPhysical and Theoretical ChemistryExerciseMolecular Biologybusiness.industryOrganic Chemistrymedicine.disease030104 developmental biologylcsh:Biology (General)lcsh:QD1-999inflammationbiology.proteinBrain-derived neurotrophic factor (BDNF)businessNeuroscience030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Subclinical gut inflammation in ankylosing spondylitis

2015

Purpose of review Subclinical gut inflammation has been described in a significant proportion of patients with ankylosing spondylitis (AS), up to 10% of them developing it during the time of clinically overt inflammatory bowel disease. Histologic, immunologic, and intestinal microbiota alterations characterize the AS gut. Recent findings Microbial dysbiosis as well as alterations of innate immune responses have been demonstrated in the gut of AS. Furthermore, a growing body of evidence suggests that the gut of AS patients may be actively involved in the pathogenesis of AS through the production of proinflammatory cytokines, such as IL-23p19, and the differentiation of potentially pathogenic…

0301 basic medicineAnkylosing spondylitis; Gut inflammation; Innate lymphoid cells; Interleukin-17; Interleukin-23; Adaptive Immunity; Animals; Cytokines; Disease Models Animal; Dysbiosis; Gastrointestinal Microbiome; Humans; Immunity Innate; Inflammation; Inflammatory Bowel Diseases; Intestines; Macrophages; Mice; Spondylitis Ankylosing; Rheumatology; Medicine (all)MacrophageAdaptive ImmunityInterleukin-23Inflammatory bowel diseaseGastroenterologyMiceInterleukin 23InnateMedicineSubclinical infectionMedicine (all)Interleukin-17digestive oral and skin physiologyInnate lymphoid cellIntestineIntestinesCytokinesmedicine.symptomHumanAnkylosingmedicine.medical_specialtyDisease ModelInflammationdigestive system03 medical and health sciencesRheumatologyInternal medicineInnate lymphoid cellAnimalsHumansSpondylitis AnkylosingCytokineSpondylitisGut inflammationSpondylitiInflammationAnkylosing spondylitisAnimalbusiness.industryMacrophagesInflammatory Bowel DiseaseImmunityInflammatory Bowel Diseasesmedicine.diseaseImmunity InnateDysbiosiGastrointestinal MicrobiomeAnkylosing spondylitiDisease Models Animal030104 developmental biologyDysbiosisbusinessDysbiosisCurrent Opinion in Rheumatology
researchProduct

New Pharmacological Opportunities for Betulinic Acid

2017

AbstractBetulinic acid is a naturally occurring pentacyclic lupane-type triterpenoid usually isolated from birch trees, but present in many other botanical sources. It is found in different plant organs, both as a free aglycon and as glycosyl derivatives. A wide range of pharmacological activities has been described for this triterpenoid, including antiviral and antitumor effects. In addition, several other interesting properties have been identified in the fields of immunity and metabolism, namely antidiabetic, antihyperlipidemic, and anti-inflammatory activities. Taken together, these latter three properties make betulinic acid a highly interesting prospect for treating metabolic syndrome…

0301 basic medicineAnti-Inflammatory AgentsPharmaceutical ScienceAntineoplastic AgentsAntiviral AgentsAnalytical Chemistry03 medical and health scienceschemistry.chemical_compoundTriterpenoidAnti-Infective AgentsBetulinic acidDrug DiscoveryAnimalsHumansHypoglycemic AgentsGlycosylBetulinic AcidDyslipidemiasHypolipidemic AgentsInflammationMetabolic SyndromePharmacologyNatural productTraditional medicineCytotoxinsOrganic ChemistryTriterpenes030104 developmental biologyDiabetes Mellitus Type 2Complementary and alternative medicinechemistryMolecular MedicinePentacyclic TriterpenesPentacyclic TriterpenesPlanta Medica
researchProduct

Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneit…

2019

15 páginas, 5 figuras y 1 tabla

0301 basic medicineAntifibrinolyticContact systemmedicine.drug_classmedicine.medical_treatment030231 tropical medicineBradykininInflammationNeurological disorderFibrinolysis systemProteomic and mass spectrometry analysesBlood–brain barrierFasciola excretome/secretomeProinflammatory cytokine03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBlood-brain barrier leakageFibrinolysismedicineIndicators and preventionAcute and chronic phasesPlasminogen-binding proteinsFasciolabiologyHuman fascioliasis030108 mycology & parasitologymedicine.diseasebiology.organism_classificationInfectious Diseasesmedicine.anatomical_structurechemistryImmunologyAnimal Science and ZoologyParasitologymedicine.symptomNeurological disordersResearch Article
researchProduct

Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport

2018

The influence of nutrition has the potential to substantially affect physical function and body metabolism. Particular attention has been focused on omega-3 polyunsaturated fatty acids (n-3 PUFAs), which can be found both in terrestrial features and in the marine world. They are responsible for numerous cellular functions, such as signaling, cell membrane fluidity, and structural maintenance. They also regulate the nervous system, blood pressure, hematic clotting, glucose tolerance, and inflammatory processes, which may be useful in all inflammatory conditions. Animal models and cell-based models show that n-3 PUFAs can influence skeletal muscle metabolism. Furthermore, recent human studies…

0301 basic medicineAntioxidantSettore MED/09 - Medicina InternaSports Nutritional Sciencesmedicine.medical_treatmentCellular functionslcsh:TX341-641InflammationReviewBioinformaticsOMEGA-3 POLYUNSATURATED FATTY ACIDS03 medical and health sciencesFatty Acids Omega-3medicineHumansExercisefunctional foodsNutritionSportchemistry.chemical_classificationInflammationOmega-3030109 nutrition & dieteticsNutrition and DieteticsHuman studiesbusiness.industrymarine bioactivesFunctional foodfood and beveragesSkeletal muscleMetabolismMarine bioactivemedicine.anatomical_structurechemistrySeafoodPUFAsmedicine.symptombusinesslcsh:Nutrition. Foods and food supplyPUFAFood SciencePolyunsaturated fatty acidHuman
researchProduct

Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides

2017

International audience; In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activ…

0301 basic medicineAntioxidant[SDV]Life Sciences [q-bio]medicine.medical_treatmentAnti-Inflammatory AgentsPharmaceutical Scienceacyl-CoA oxidase 1; catalase; β-oxidation; <i>Escherichia coli</i>; lipopolysaccharides; LPS; nitric oxide; Opuntia; peroxisomes; <i>Salmonella minnesota</i>AntioxidantsAnalytical ChemistryMicechemistry.chemical_compoundSalmonellaDrug Discoverychemistry.chemical_classificationbiologyMicrogliaFatty AcidscatalaseOpuntiaPeroxisome[SDV] Life Sciences [q-bio]Neuroprotective Agentsmedicine.anatomical_structureBiochemistryChemistry (miscellaneous)CatalaseMolecular MedicineACOX1Microgliamedicine.symptomOxidation-ReductionLPSInflammationArticleCell LineNitric oxideMicrobiologylcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrynitric oxideEscherichia colimedicineAnimalsSalmonella minnesotaPhysical and Theoretical Chemistryacyl-CoA oxidase 1[ SDV ] Life Sciences [q-bio]Plant ExtractsOrganic ChemistryperoxisomeslipopolysaccharidesOxidative Stress030104 developmental biologyEnzymechemistrybiology.proteinβ-oxidationReactive Oxygen SpeciesMolecules
researchProduct

Mutual influences between Nitric Oxide and Paraoxonase 1

2019

Este artículo se ha publicado de forma definitiva en: https://www.mdpi.com/2076-3921/8/12/619 Este artículo pertenece al número especial "Paraoxonase in Oxidation and Inflammation". One of the best consolidated paradigms in vascular pharmacology is that an uncontrolled excess of oxidizing chemical species causes tissue damage and loss of function in the endothelial and subendothelial layers. The fact that high-density lipoproteins play an important role in preventing such an imbalance is integrated into that concept, for which the expression and activity of paraoxonases is certainly crucial. The term paraoxonase (aryldialkyl phosphatase, EC 3.1.8.1) encompasses at least three distinct isofo…

0301 basic medicineAntioxidantantioxidantPhysiologymedicine.medical_treatmentClinical BiochemistryPhosphataseCellOxidative phosphorylationReview030204 cardiovascular system & hematologyBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinenitric oxidemedicinevascular inflammationVasculitis - Tratamiento.Molecular Biologychemistry.chemical_classificationreactive oxygen speciesReactive oxygen speciesÓxido nítrico - Uso terapéutico.biologyParaoxonaseserum lipoproteinCell BiologyParaoxonase - Therapeutic use.Paraoxonasa - Uso terapéutico.paraoxonaseNitric oxide synthaseLipoproteínas.030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryAntioxidantes.biology.proteinVasculitis - Treatment.Antioxidants.Nitric oxide - Therapeutic use.Lipoproteins.
researchProduct

Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice

2020

Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), i…

0301 basic medicineAntioxidantketaminemedicine.medical_treatmentPharmacologylcsh:RC321-571Superoxide dismutaseLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineindomethacinmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatrycelastrolNeuroinflammationOriginal Researchchemistry.chemical_classificationprefrontal cortexReactive oxygen speciesbiologybusiness.industryGeneral NeuroscienceGlutathioneMalondialdehydeanimal models030104 developmental biologychemistryinflammationCelastrolredoxbiology.proteinbusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct