Search results for "Josep"
showing 10 items of 284 documents
Very large thermophase in ferromagnetic josephson junctions
2014
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Fabrication and Characterization of Epitaxial NbN/TaN/NbN Josephson Junctions Grown by Pulsed Laser Ablation
2009
We report fabrication and characterization of epitaxial NbN/TaN/NbN Josephson junctions grown by pulsed laser ablation. These SNS junctions can be used as elements of rapid-single-flux-quantum (RSFQ) logic, which is a promising technology for high speed digital electronic devices. The NbN/TaN/NbN trilayer films were prepared on a single crystal MgO substrate by pulsed laser ablation, and patterned into junctions using a novel process utilizing e-beam lithography, chemical vapor deposition and e-beam evaporation. The quality of junctions was tested by measuring the temperature dependence of the junctions' IcRn values, observed to be quite close to theoretical values.
An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts
2017
We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50$\,\mathrm{m}\Omega \cdot \mu \mathrm{m}^2$ at a frequency of 4.5 GHz. Resonators for which only $6\%$ of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic …
Magnetic field-controlled 0−π transitions and their experimental signatures in superconductor-ferromagnet-superconductor junctions
2019
Superconductor-ferromagnet-superconductor Josephson junctions are known to exist in the $0$ and $\pi$ states with the transitions between them controlled by the temperature and ferromagnetic interlayer thickness. We demonstrate that these transitions can be controlled also by the external magnetic field directed perpendicular to the layers. By varying the ratio of diffusion coefficients in superconducting and ferromagnetic layers, these field-controlled transitions can be made detectable for arbitrary large value of the exchange energy in the ferromagnet. We also show that the $0$-$\pi$ transitions in the perpendicular field can be observed as the specific features of the flux-flow conducti…
Localizing quantum phase slips in one-dimensional Josephson junction chains
2013
Published version of an article in the journal: New Journal of Physics. Also available from the publisher at: http://dx.doi.org/10.1088/1367-2630/15/9/095014 Open Access We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R0, as well as current-voltage characteristics (IVC). The finite R0 is explained by QPS and shows an exponential dependence on with a distinct change in the exponent at R 0 = RQ = h/4e2. When R0 > R Q, the…
Cavity optomechanics mediated by a quantum two-level system
2015
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiat…
Adiabatic transport of Cooper pairs in arrays of Josephson junctions
1999
We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurrent flow through the array. Both corrections decrease exponentially with the number N of junctions in the array, but give a serious limitation of accuracy for any practical array. The supercurrent at resonant gate voltages decreases with N only as sin(v/N)/N, where v is the Josephson phase difference across the array.
Noise Induced Phenomena in point Josephson junctions
2008
We present the analysis of the mean switching time and its standard deviation of short overdamped Josephson junctions, driven by a direct current and a periodic signal. The effect of noise enhanced stability is investigated. It is shown that fluctuations may both decrease and increase the switching time.
INFLUENCE OF LENGTH ON THE NOISE DELAYED SWITCHING OF LONG JOSEPHSON JUNCTIONS
2008
The transient dynamics of long overlap Josephson junctions in the frame of the sine-Gordon model with a white noise source is investigated. The effect of noise delayed decay is observed for the case of overdamped sine-Gordon equation. It is shown that this noise induced effect, in the range of small noise intensities, vanishes for junctions lengths greater than several Josephson penetration length.
THE ROLE OF NON-GAUSSIAN SOURCES IN THE TRANSIENT DYNAMICS OF LONG JOSEPHSON JUNCTIONS
2013
We analyze the effects of different non-Gaussian noise sources on the transient dynamics of an overdamped long Josephson junction. We find nonmonotonic behavior of the mean escape time as a function of the noise intensity and frequency of the external driving signal for all the noise sources investigated.