Search results for "Lithography"

showing 10 items of 242 documents

ReaxFF molecular dynamics simulation study of nanoelectrode lithography oxidation process on silicon (100) surface

2019

Abstract The nanoelectrode lithography has been strengthened in recent years as one of the most promising methods due to its high reproducibility, low cost and ability to manufacture nano-sized structures. In this work, the mechanism and the parametric influence in nanoelectrode lithography have been studied qualitatively in atomic scale using ReaxFF MD simulation. This approach was originally developed by van Duin and co-workers to investigate hydrocarbon chemistry. We have investigated the water adsorption and dissociation processes on Si (100) surface as well as the characteristics (structure, chemical composition, morphology, charge distribution, etc.) of the oxide growth. The simulatio…

Materials scienceOxideGeneral Physics and AstronomyCharge density02 engineering and technologySurfaces and InterfacesGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTSDissociation (chemistry)0104 chemical sciencesSurfaces Coatings and FilmsMolecular dynamicschemistry.chemical_compoundAdsorptionchemistryChemical physicsMoleculeReaxFF0210 nano-technologyLithography
researchProduct

Photoconductive properties of Bi2S3nanowires

2015

The photoconductive properties of Bi2S3 nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm−2. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of individual Bi2S3 nanowires liberated from the AAO membrane were determined and compared with those of arrays of as-produced Bi2S3 nanowires templated inside pores of AAO membrane. The alumina membrane was found to significantly influence the photoconductive properties of the AAO-hosted Bi2S3 nanowires, when compared to liberated from the AAO membrane…

Materials sciencePhotoconductivityPHOTODETECTORSThin filmsPhotoconductivity spectrumAluminaNanowireGeneral Physics and AstronomyNanotechnologySemiconductor growth02 engineering and technology010402 general chemistryNanofabrication01 natural sciencesSemiconductor materialsTHIN-FILMSThin filmONE-DIMENSIONAL NANOSTRUCTURESArraysPhotocurrentOne-dimensional nanostructuresMembranesNanowire surfaceNanowiresbusiness.industryAnodizingPhotoconductivityPhotodetectors021001 nanoscience & nanotechnologyCharge carrier trappingARRAYS0104 chemical sciencesMembraneNanolithographyIllumination intensityAnodized aluminaPhotoconductive propertiesSemiconductor quantum wiresOptoelectronicsAlumina membranesCharge carrierElectron trapsPhoton energy0210 nano-technologybusinessBismuth compoundsJournal of Applied Physics
researchProduct

Defect spectroscopy of single ZnO microwires

2014

The point defects of single ZnO microwires grown by carbothermal reduction were studied by microphotoluminescence, photoresistance excitation spectra, and resistance as a function of the temperature. We found the deep level defect density profile along the microwire showing that the concentration of defects decreases from the base to the tip of the microwires and this effect correlates with a band gap narrowing. The results show a characteristic deep defect levels inside the gap at 0.88 eV from the top of the VB. The resistance as a function of the temperature shows defect levels next to the bottom of the CB at 110 meV and a mean defect concentration of 4 1018 cm3 . This combination of tech…

Materials sciencePhotoluminescenceDeep levelbusiness.industryBand gapCiencias FísicasWide-bandgap semiconductorNanowireGeneral Physics and Astronomy//purl.org/becyt/ford/1.3 [https]Crystallographic defect//purl.org/becyt/ford/1 [https]NanolithographyMicrowiresZnOOptoelectronicsDefectsSpectroscopybusinessCIENCIAS NATURALES Y EXACTASSpectroscopyFísica de los Materiales Condensados
researchProduct

Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

2015

Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [101¯0] direction. Interestingly, the average wire diameter has been found to …

Materials sciencePhotoluminescencebusiness.industryExcitonAnalytical chemistryWide-bandgap semiconductorNanowireGeneral Physics and AstronomyCatalysisNanolithographyMolecular vibrationOptoelectronicsbusinessLuminescenceJournal of Applied Physics
researchProduct

Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors

2006

The development of surface plasmon polariton (SPP) optical elements is mandatory in order to achieve surface plasmon based photonics. A current approach to reach this goal is to take advantage of the interaction of SPP with defects and design elements obtained by the micro- or nano-structuration of the metal film. In this work, we have performed a detailed study of the performance and behavior of SPP-Bragg mirrors, designed for 45\ifmmode^\circ\else\textdegree\fi{} incidence, based on this approach. Mirrors consisting of gratings of both metal ridges on the metal surface and grooves engraved in the metal, fabricated by means of electron beam lithography and focused ion beam, have been consi…

Materials sciencePhysics::OpticsNear and far field02 engineering and technology01 natural sciencesFocused ion beam010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesTransmission coefficient[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall][PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]business.industryScatteringSurface plasmon021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurface plasmon polaritonElectronic Optical and Magnetic Materials[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicPhotonics0210 nano-technologybusinessElectron-beam lithography
researchProduct

Microstructuring of phospholipid bilayers on gold surfaces by micromolding in capillaries

2005

Microstructuring of lipid bilayers on gold surfaces was achieved by micromolding in capillaries employing chemically modified polydimethylsiloxane (PDMS). Microfluidic networks of PDMS were prepared by micromolding and functionalized with thiol end-groups using 3-mercaptopropyltrimethoxysilane. The PDMS stamps were firmly attached to the gold substrate via quasi-covalent linkage providing a tight seal, a prerequisite for establishing individual addressable capillaries. Bilayers composed of POPC/POPG were subsequently prepared on microstructured self assembly monolayers of 11-amino-1-undecanethiol via strong electrostatic interactions. This way it is possible to generate individually address…

Materials sciencePolydimethylsiloxaneLipid BilayersMicrofluidicsMicrofluidicsSiliconestechnology industry and agriculturePDMS stampNanotechnologyMicroscopy Atomic ForceSoft lithographySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundColloid and Surface ChemistrychemistryMonolayerDimethylpolysiloxanesGoldSelf-assemblyLipid bilayerPOPCPhospholipidsJournal of Colloid and Interface Science
researchProduct

Toward Photopatternable Thin Film Optical Sensors Utilizing Reactive Polyphenylacetylenes

2013

Substituted polyphenylacetylenes featuring reactive pentafluorophenyl (PFP) ester moieties are synthesized. Parts of the reactive PFP groups are then converted with a mono ortho-nitrobenzyl-protected diamine in variable ratios. Thin films are prepared from these copolymers and irradiated with UV light (λ = 365 nm), resulting in crosslinking of the irradiated areas and hence enabling a photopatterning. We found that during the photocrosslinking process, the excess of PFP ester moieties is stable and remained intact, enabling a subsequent post-polymerization modification step with amines. Noteworthy, this subsequent modification with amines results in a dramatically shift in the UV-vis absorp…

Materials sciencePolymers and PlasticsAbsorption spectroscopyPolymersUltraviolet RaysConjugated systemPhotochemistrylaw.inventionchemistry.chemical_compoundlawDiamineSpectroscopy Fourier Transform InfraredPolymer chemistryMaterials ChemistryCopolymerIrradiationAminesThin filmchemistry.chemical_classificationOrganic ChemistryOptical DevicesEstersPolymerPhotochemical ProcesseschemistryAlkynesPhotolithographyMacromolecular Rapid Communications
researchProduct

Creating Defined 3-D Defects Inside an Opaline Ormocer® Matrix with Two-Photon Lithography

2007

The creation of defined structures inside a synthetic opal is a key step toward applications in optics, where control of the propagation of light inside a photonic crystal is necessary. In a previous paper, we described the nanostructuring of Ormocer® to form inverse opals (Lange et al., Macromol. Rapid Commun. 2006, 27, 1746). Here, we report an application for this robust replica process in which defects can be directly produced within the PC by two-photon lithography. The holes of an inverse opal structure are first filled with a resin of similar refractive index. In this transparent material, polymerization can be initiated at defined places via two-photon lithography. After removal of …

Materials sciencePolymers and PlasticsBand gapbusiness.industryReplicaOrganic ChemistryMultiphoton lithographylaw.inventionWavelengthOpticslawMaterials ChemistryPhotolithographybusinessLithographyRefractive indexPhotonic crystalMacromolecular Rapid Communications
researchProduct

Polyelectrolytes on block copolymer surfaces

2004

Soft lithography and properties of amphiphilic block copolymers are combined in a new technique for the generation of patterned substrates, which can be used in different ways as templates for further processing. In these processing steps the deposition of polyelectrolytes, metals and grafting from polymerizations are used for the construction of different structures.

Materials sciencePolymers and PlasticsOrganic ChemistryCondensed Matter PhysicsGraftingPolyelectrolyteSoft lithographyTemplateChemical engineeringPolymer chemistryAmphiphileMaterials ChemistryCopolymerDeposition (phase transition)MetallizingMacromolecular Symposia
researchProduct

Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development

2022

This work rationalizes the scalable synthesis of ultrasmall, ligand-free silicon nanomaterials via liquid-phase pulsed laser ablation process using picosecond pulses at ultraviolet wavelengths. Results showed that the irradiation time drives hydrodynamic NP size. Isolated, monodisperse Si-NPs are obtained at high yield (72%) using post-treatment process. The obtained Si-NPs have an average size of 10 nm (not aggregated) and display photoemission in the green spectral range. We directly characterized the ligand-free Si-NPs in a vertebrate animal (zebrafish) and assessed their toxicity during the development. In vivo assay revealed that Si-NPs are found inside in all the early life stages of …

Materials scienceSiliconBiomedical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistrymedicine.disease_cause01 natural sciencessemiconductors biocompatible materials imaging agents quantum dots nanofabrication laser ablation in liquid biological materials toxicology translocation blood barrier biological imaging fluorecence imaging optical materialslaw.inventionNanomaterialsBiomaterialslawmedicinebusiness.industryBiochemistry (medical)General Chemistry021001 nanoscience & nanotechnologyLaserFluorescence0104 chemical sciencesNanolithographychemistryPicosecondOptoelectronics0210 nano-technologybusinessBiological imagingUltravioletACS Applied Bio Materials
researchProduct