Search results for "Lithography"

showing 10 items of 242 documents

Silicon quantum point contact with aluminum gate

2000

Fabrication and electrical properties of silicon quantum point contacts are reported. The devices are fabricated on bonded silicon on insulator (SOI) wafers by combining CMOS process steps and e-beam lithography. Mobility of 9000 cm2 Vs−1 is measured for a 60 nm-thick SOI film at 10 K. Weak localization data is used to estimate the phase coherence length at 4.2 K The point contacts show step like behaviour in linear response conductance at 1.5 K. At 200 mK universal conductance fluctuations begin to dominate the conductance curve. The effective diameter of quantum point constrictions of the devices are estimated to be 30–40 nm. This estimate is based on TEM analysis of test structures and A…

Materials scienceSiliconCondensed matter physicsMechanical EngineeringQuantum point contactSilicon on insulatorchemistry.chemical_elementConductanceCondensed Matter PhysicsWeak localizationchemistryMechanics of MaterialsGeneral Materials ScienceWaferLithographyUniversal conductance fluctuationsMaterials Science and Engineering B: Solid-State Materials for Advanced Technology
researchProduct

Potential of amorphous Mo–Si–N films for nanoelectronic applications

2003

The properties of amorphous metallic molybdenum–silicon–nitrogen (Mo–Si–N) films were characterised for use in nanoelectronic applications. The films were deposited by co-sputtering of molybdenum and silicon targets in a gas mixture of argon and nitrogen. The atomic composition, microstructure and surface roughness were studied by RBS, TEM and AFM analyses, respectively. The electrical properties were investigated in the temperature range 80 mK to 300 K. No transition into a superconductive state was observed. Nanoscale wires were fabricated using electron beam lithography with their properties measured as a function of temperature.

Materials scienceSiliconchemistry.chemical_elementmictamict alloyamorphous metal filmSurface roughnessElectrical and Electronic EngineeringArgonMo-Si-Nbusiness.industryMetallurgyAtmospheric temperature rangeCondensed Matter PhysicsMicrostructureAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidchemistrynanoscale wiringtemperature coefficient of resistivityOptoelectronicsbusinessElectron-beam lithographyMetallic bondingMicroelectronic Engineering
researchProduct

Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization.

2013

A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidi…

Materials scienceSurface PropertiesGreen Fluorescent ProteinsOligonucleotidesLigandsBiomaterialsCell membranechemistry.chemical_compoundEpidermal growth factorDip-pen nanolithographyCell Line TumorMaterials TestingMicrochip Analytical ProceduresmedicineHumansNanotechnologyGeneral Materials ScienceBiotinylationBiochipOligonucleotide Array Sequence AnalysisEpidermal Growth FactorOligonucleotideCell MembraneProteinsNanolitographyGeneral ChemistryCell BiologyDNABiochipCell biologymedicine.anatomical_structurecell.chemistryBiotinylationMCF-7 CellsGlassproteinDNABiotechnologyProtein ligandSmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein.

2011

Materials scienceSurface PropertiesMechanical EngineeringNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCathepsinsSoft lithographyRecombinant Proteins0104 chemical sciences3. Good healthlaw.inventionImmobilized ProteinsMicroscopy FluorescenceMechanics of MaterialslawMicrocontact printingRecombinant DNAGeneral Materials Science0210 nano-technologyAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Design and operation of CMOS-compatible electron pumps fabricated with optical lithography

2017

We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…

Materials science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanowireSilicon on insulatorPhysics::OpticsFOS: Physical sciences02 engineering and technology7. Clean energy01 natural sciencesCapacitancelaw.inventionOptical pumpingCondensed Matter::Materials Sciencelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsLithographyComputingMilieux_MISCELLANEOUSCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCoulomb blockade021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsComputer Science::OtherCMOSOptoelectronicsPhotolithography0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]
researchProduct

Holographic recording in amorphous chalcogenide thin films

2003

A review of the recent advances and developments in the practical application of chalcogenide materials is presented, focusing special attention on holography and lithography using amorphous chalcogenide thin films.

Materials sciencebusiness.industryChalcogenideHolographyAmorphous solidlaw.inventionchemistry.chemical_compoundOpticschemistrylawOptoelectronicsGeneral Materials ScienceThin filmbusinessLithographyHolographic recordingCurrent Opinion in Solid State and Materials Science
researchProduct

Holographic recording in amorphous chalcogenide semiconductor thin films

2003

Abstract A detailed study of the amorphous As–S–Se and As2S3 films as recording media for optical holography and electron beam lithography is presented. The results of R&D on resist based on the amorphous As–S–Se thin films for manufacturing of embossed holographic labels are discussed. The holographic recording of transmission and Bragg gratings was studied.

Materials sciencebusiness.industryChalcogenideHolographyCondensed Matter PhysicsDiffraction efficiencyElectron holographyElectronic Optical and Magnetic Materialslaw.inventionAmorphous solidchemistry.chemical_compoundOpticschemistryResistlawMaterials ChemistryCeramics and CompositesThin filmbusinessElectron-beam lithographyJournal of Non-Crystalline Solids
researchProduct

Amorphous As–S–Se semiconductor resists for holography and lithography

2002

Abstract The photo- and electron-beam induced changes in solubility of thin films of the amorphous chalcogenide semiconductors As–S–Se and As 2 S 3 have been studied. The possibilities of practical application of these materials as resists for the production of relief holograms and holographic optical elements are discussed. It is shown that the self-enhancement (SE) phenomenon of holographic recording in amorphous chalcogenide semiconductor films by light or thermal treatment can be used to increase the diffraction efficiency (DE) of the holograms.

Materials sciencebusiness.industryChalcogenideHolographyCondensed Matter PhysicsDiffraction efficiencyElectronic Optical and Magnetic MaterialsAmorphous solidlaw.inventionchemistry.chemical_compoundSemiconductorOpticschemistryResistlawMaterials ChemistryCeramics and CompositesOptoelectronicsThin filmbusinessLithographyJournal of Non-Crystalline Solids
researchProduct

<title>Amorphous chalcogenide semiconductor resists for holography and electron-beam lithography</title>

2001

The photo- and electron beam induced changes in solubility of amorphous chalcogenide semiconductor As-S-Se and As2S3 thin films have been studied. The possibilities of practical application of these materials as resists for the production of relief holograms and holographic optical elements are discussed. It is shown that the self-enhancement phenomenon of holographic recording in amorphous chalcogenide semiconductor films by light or thermal treatment can be used to increase the diffraction efficiency of the holograms.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Materials sciencebusiness.industryChalcogenideHolographylaw.inventionInterference lithographyAmorphous solidchemistry.chemical_compoundSemiconductorOpticschemistryResistlawX-ray lithographybusinessElectron-beam lithographyOptical Organic and Inorganic Materials
researchProduct

At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy.

2007

A new at-wavelength inspection technology to probe nanoscale defects buried underneath Mo/Si multilayers on an extreme ultraviolet (EUV) lithography mask blank has been implemented using EUV photoemission electron microscopy (EUV-PEEM). EUV-PEEM images of programmed defect structures of various lateral and vertical sizes recorded at an ~13.5 nm wavelength show that 35 nm wide and 4 nm high buried line defects are clearly detectable. The imaging technique proves to be sensitive to small phase jumps, enhancing the edge visibility of the phase defects, which is explained in terms of a standing wave enhanced image contrast at resonant EUV illumination.

Materials sciencebusiness.industryExtreme ultraviolet lithographyAtomic and Molecular Physics and Opticslaw.inventionPhotoemission electron microscopyWavelengthOpticslawExtreme ultravioletMicroscopyOptoelectronicsPhotolithographybusinessLithographyElectron-beam lithographyOptics letters
researchProduct