Search results for "MOLECULAR"
showing 10 items of 32340 documents
Variable-charge method applied to study coupled grain boundary migration in the presence of oxygen
2009
International audience; One of the important differences between simulation and experiments in grain boundary (GB)-dominated metallic structures is the lack of impurities such as oxygen in computational samples. A modified variable-charge method [Elsener A, Politano O, Derlet PM, Van Swygenhoven H. Modell Simul Mater Sci Eng 2008;16:025006] based on the Streitz and Mintmire approach [Streitz FH, Mintmire JW. Phys Rev B 1994;50:11996] is used to study coupled GB motion in an Al bicrystal with a [1 1 2] symmetrical tilt GB in the presence of substitutional O, and compared with the stick–slip process identified by Cahn and Mishin [Cahn JW, Mishin Y, Suzuki A. Acta Mater 2006;54:4953]. It is found…
Corrosion of Welded Metal Structures of Mining Equipment
2018
Mining equipment made of welded metal structures is strongly affected by the corrosion phenomenon due to the working conditions. Initial research has shown that the corrosion phenomenon is most pronounced in the area of cross-welded joints and welded T-shaped joints. In the researches, there was made a chemical analysis of the welded construction material used respectively of the new material and it was observed a reduction in carbon concentration in the material used, but also a substantial increase in the sulfur concentration compared to the new material. The pronounced corrosion of the metallic structure is influenced by the chemical composition change because the sulfur is a grafitizin…
Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature
2011
Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…
Application of enthalpy model for floating zone silicon crystal growth
2017
Abstract A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the pol…
Band gap of corundumlike α−Ga2O3 determined by absorption and ellipsometry
2017
The electronic structure near the band gap of the corundumlike $\ensuremath{\alpha}$ phase of ${\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$ has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400--190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which y…
SiC MOSFET vs SiC/Si Cascode short circuit robustness benchmark
2019
Abstract Nowadays, MOSFET SiC semiconductors short circuit capability is a key issue. SiC/Si Cascodes are compound semiconductors that, in some aspects, show a similar MOSFET behaviour. No interlayer dielectric insulation suggests, in theory, Cascode JFETs as more robust devices. The purpose of this paper is to compare the drift and degradation of two commercial devices static parameters by exposing them to different levels of repetitive 1.5 μs short-circuit campaigns at 85% of its breakdown voltage. Short-circuit time has been set experimentally, and longer times result in catastrophic failure of MOSFET devices due to over self-heating. For this purpose, pre- and post-test short circuit ch…
2018
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…
Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals
2020
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).
Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals
2018
Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…
Stabilization of primary mobile radiation defects in MgF2 crystals
2016
Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…