Search results for "Mesoscopic System"

showing 10 items of 587 documents

Temperature dependence of the E2h phonon mode of wurtzite GaN/AlN quantum dots

2008

Raman scattering has been used to study the temperature dependence of the frequency and linewidth of the E2h phonon mode of GaN/AlN quantum dot stacks grown on 6H-SiC. The evolution of the nonpolar phonon mode was analyzed in the temperature range from 80 to 655 K for both quantum dots and barrier materials. The experimental results are interpreted by comparison with a model that takes into account symmetric phonon decay and the different thermal expansions of the constituents of the heterostructure. We find a small increase in the anharmonic parameters of the phonon modes in the heterostructure with respect to bulk. jorbumar@alumni.uv.es Alberto.Garcia@uv.es Ana.Cros@uv.es

III-V semiconductorsMaterials scienceCondensed matter physicsPhononUNESCO::FÍSICAGallium compoundsGeneral Physics and AstronomyHeterojunctionAluminium compounds ; Gallium compounds ; III-V semiconductors ; Phonons ; Raman spectra ; Semiconductor quantum dots ; Thermal expansionAtmospheric temperature rangeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials Sciencesymbols.namesakeLaser linewidth:FÍSICA [UNESCO]Quantum dotsymbolsPhononsSemiconductor quantum dotsRaman spectraThermal expansionRaman spectroscopyAluminium compoundsRaman scatteringWurtzite crystal structureJournal of Applied Physics
researchProduct

Raman study of self-assembled InAs/InP quantum wire stacks with varying spacer thickness

2008

http://link.aip.org/link/?JAPIAU/104/033523/1

III-V semiconductorsMaterials sciencePhononAnnealing (metallurgy)General Physics and AstronomyCritical pointsDielectricAnnealingCondensed Matter::Materials Sciencesymbols.namesake:FÍSICA [UNESCO]Indium compoundsCondensed matter physicsQuantum wireUNESCO::FÍSICAAnnealing ; Critical points ; III-V semiconductors ; Indium compounds ; Phonons ; Raman spectra ; Self-assembly ; Semiconductor quantum wiresSelf-assemblyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular vibrationSemiconductor quantum wiressymbolsPhononsRaman spectraRaman spectroscopyExcitationRaman scatteringJournal of Applied Physics
researchProduct

Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings

2007

We have carried out continuous wave and time resolved photoluminescence experiments in self-assembled In(Ga)As quantum dots and quantum rings embedded in field effect structure devices. In both kinds of nanostructures, we find a noticeable increase of the exciton radiative lifetime with the external voltage bias that must be attributed to the field-induced polarizability of the confined electron hole pair. The interplay between the exciton radiative recombination and the electronic carrier tunneling in the presence of a stationary electric field is therefore investigated and compared with a numerical calculation based on the effective mass approximation.

III-V semiconductorsOscillator strengthRadiative lifetimesTime resolved spectraTunnellingSelf assembledCondensed Matter::Materials ScienceGallium arsenideIndium compoundsElectric fieldQuantum mechanicsSemiconductor quantum dotsNetwork of excellenceEuropean commissionPhotoluminescenceQuantum tunnellingPhysicsSelf-assemblyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum dotEffective massElectron hole recombinationElectron-hole recombinationPhysical Review B
researchProduct

Correlation between optical properties and barrier composition in InxGa1−xP/GaAs quantum wells

1998

9 páginas, 11 figuras.

III-V semiconductorsPhotoluminescenceMaterials scienceBand gapExcitonAlloyGeneral Physics and Astronomyengineering.materialGallium arsenideSpectral line broadeningchemistry.chemical_compoundCondensed Matter::Materials ScienceGallium arsenideIndium compounds:FÍSICA [UNESCO]Optical constantsInterface structureFluctuationsSemiconductor quantum wellsPhotoluminescenceQuantum wellCondensed matter physicsCondensed Matter::OtherGallium compoundsUNESCO::FÍSICAHeterojunctionInterface statesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectStoichiometryEnergy gapchemistryIndium compounds ; Gallium compounds ; III-V semiconductors ; Gallium arsenide ; Semiconductor quantum wells ; Interface structure ; Photoluminescence ; Excitons ; Interface states ; Fluctuations ; Stoichiometry ; Spectral line broadening ; Energy gap ; Optical constantsengineeringExcitonsMolecular beam epitaxy
researchProduct

Experimental investigation of the kink effect and the low frequency noise properties in pseudomorphic HEMT’s

2005

The kink effect in low-noise pseudomorphic (AlGaAs/InGaAs) HEMT's has been examined in detail by investigating the steady-state and pulsed I-V characteristics, the behavior of the output conductance dispersion and the performance of the gate leakage current to understand its origin. No clear evidence of impact ionization occurrence in the InGaAs channel at kink bias conditions (V-DS.kink = 1.5 V) has been found, thus suggesting that the predominant mechanism should be attributed to trap-related phenomena. A significant rise of the gate current has been found at very high drain voltages (far from V-DS.kink) associated with low drain current values which is probably due to impact ionization o…

IMPACT IONIZATIONCondensed matter physicsChemistrybusiness.industryInfrasoundGATEElectrical engineeringConductanceHigh-electron-mobility transistorLow frequencyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsCutoff frequencyElectronic Optical and Magnetic MaterialsImpact ionizationDispersion (optics)Materials ChemistryINALAS/INGAAS HEMTSElectrical and Electronic EngineeringbusinessDRAINLIGHT-EMISSIONBEHAVIORNoise (radio)Solid-State Electronics
researchProduct

Skyrmion-number dependence of spin-transfer torque on magnetic bubbles

2015

We theoretically study the skyrmion-number dependence of spin-transfer torque acting on magnetic bubbles. The skymrion number of magnetic bubbles can take any integer value depending on the magnetic profile on its circumference and the size of the bubble. We find that the transverse motion of a bubble with respect to the charge current is greatly suppressed as the absolute value of the skyrmion number departs from unity, whereas the longitudinal motion is less sensitive.

ImaginationPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsBubblemedia_common.quotation_subjectSkyrmionSpin-transfer torqueGeneral Physics and AstronomyFOS: Physical sciencesAbsolute value02 engineering and technology021001 nanoscience & nanotechnologyCircumferenceCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesPhysics::Fluid DynamicsTransverse plane0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Torque010306 general physics0210 nano-technologymedia_common
researchProduct

"Table 9" of "Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV"

2013

v3{SP}/epsilon(CGC) (blue filled squares).

InclusiveV2760.0Astrophysics::Solar and Stellar AstrophysicsCondensed Matter::Strongly Correlated ElectronsAstrophysics::Cosmology and Extragalactic AstrophysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPB PB --> CHARGED XAstrophysics::Galaxy Astrophysics
researchProduct

Charge transport through spin-polarized tunnel junction between two spin-split superconductors

2019

We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers with arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Green's functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are…

Josephson effect---suprajohtavuusFOS: Physical sciences02 engineering and technology01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)MagnetizationTunnel junctionCondensed Matter::Superconductivity0103 physical sciences010306 general physicsQuantum tunnellingSuperconductivityPhysicsCondensed matter physicssuperconductivityCondensed Matter - SuperconductivityJosephson effectOrder (ring theory)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic anisotropyGeometric phaseproximity effect0210 nano-technology
researchProduct

High dynamic resistance elements based on a Josephson junction array

2020

A chain of superconductor–insulator–superconductor junctions based on Al–AlOx–Al nanostructures and fabricated using conventional lift-off lithography techniques was measured at ultra-low temperatures. At zero magnetic field, the low current bias dynamic resistance can reach values of ≈1011 Ω. It was demonstrated that the system can provide a decent quality current biasing circuit, enabling the observation of Coulomb blockade and Bloch oscillations in ultra-narrow Ti nanowires associated with the quantum phase-slip effect.

Josephson effectDynamic resistanceSuperconductivityMaterials scienceNanowireGeneral Physics and Astronomy02 engineering and technologylcsh:Chemical technologylcsh:Technology01 natural sciencesFull Research PapernanoelectronicsCondensed Matter::Materials ScienceJosephson junction array0103 physical sciencesNanotechnologylcsh:TP1-1185General Materials Sciencequantum phase slipElectrical and Electronic Engineeringlcsh:Science010306 general physicsdynamic resistanceSuperconductivitylcsh:Tbusiness.industrysuperconductivityNanoelectronicsCoulomb blockadeBiasing021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlcsh:QC1-999Magnetic fieldNanoscienceNanoelectronicsOptoelectronicsBloch oscillationslcsh:Q0210 nano-technologybusinesslcsh:PhysicsQuantum phase slipTi nanowiresBeilstein Journal of Nanotechnology
researchProduct

Time Evolution of two distant SQUID rings irradiated with entangled electromagnetic field

2006

Two distant mesoscopic SQUID rings are irradiated with two mode microwaves produced by the same source. The time evolution of the system is studied. The two microwave modes are correlated. It is shown that the currents tunnelling through the Josephson junctions in the distant rings, are also correlated.

Josephson effectElectromagnetic fieldPhysicsMesoscopic physicsCondensed matter physicsTime evolutionAstrophysics::Cosmology and Extragalactic AstrophysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicslaw.inventionSQUIDlawCondensed Matter::SuperconductivityIrradiationMicrowaveQuantum tunnelling
researchProduct