Search results for "Monte Carlo Simulation"

showing 10 items of 104 documents

A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope.

2011

An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained …

Optical telescopesAMANDASelection proceduresRobust reconstructionMonte Carlo methodAtmospheric muonsReal-time applicationNeutrino telescope01 natural sciencesHigh Energy Physics - ExperimentFast algorithmsHigh Energy Physics - Experiment (hep-ex)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsDetectorMonte Carlo SimulationMonte Carlo methodsComputer simulationLIGHTddc:540Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAlgorithmAlgorithmsFLUXOnline monitoring[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeFOS: Physical sciencesTrack reconstructionOptical telescopeNuclear physicsMuon tracks0103 physical sciencesAngular resolutionLight sources010306 general physicsOptical follow-upDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)MuonANTARESneutrino telescope; track reconstruction010308 nuclear & particles physicsCharged particlesTrack (disk drive)track reconstructionAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics - Data Analysis Statistics and ProbabilityFISICA APLICADAATMOSPHERIC NEUTRINOSNeutrino telescopesSYSTEMData Analysis Statistics and Probability (physics.data-an)
researchProduct

PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE

2021

Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kind of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, stand-alone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming lan…

Parallel computingPhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)FortranRadiation transportFOS: Physical sciencesGeneral Physics and AstronomyParallel computingcomputer.software_genre01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasElectron-photon showers0103 physical sciencesCIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL010306 general physicsMonte Carlo simulationcomputer.programming_languageMPICHbusiness.industryInstrumentation and Detectors (physics.ins-det)Construct (python library)Computational Physics (physics.comp-ph)Modular designPhysics - Medical PhysicsShared memoryHardware and ArchitectureProgramming paradigmDistributed memoryMPIMedical Physics (physics.med-ph)CompilerMedical physicsbusinessPhysics - Computational Physicscomputer
researchProduct

Mobilization upon Cooling

2021

Abstract Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization up…

Phase transitionMaterials scienceCommunicationSTMDegrees of freedom (physics and chemistry)chemistry.chemical_elementmolecular self-assemblyGeneral Chemistry540Phase Transition | Very Important PaperCopperCommunicationsCatalysisAdsorptioninverse meltingchemistryphase transitionChemical physicsMolybdenumPhase (matter)MoleculeMonte Carlo simulation
researchProduct

Confinement effects on phase behavior of soft matter systems.

2008

When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by computer simulations of the Asakura-Oosawa model for colloid-polymer mixtures, but applications to other soft matter systems (e.g. confined polymer blends) will also be mentioned. Typically a wall will prefer one of the phases, and hence the composition of the system in the direction perpendicular to the walls will not be homogeneous. If both walls are of the same kind, this effect leads to a distortion of the phase diagram of the system in thin …

Phase transitionMaterials scienceFOS: Physical sciences02 engineering and technologySoft modesCondensed Matter - Soft Condensed Matter01 natural sciencesPhysics::Fluid DynamicsLiquid crystalPhase (matter)0103 physical sciencesLamellar structureSoft matter010306 general physicsMonte Carlo simulationphase behavior in confinementPhase diagramCondensed Matter - Materials ScienceChromatographyCondensed matter physicsCapillary condensationMaterials Science (cond-mat.mtrl-sci)colloidal systemsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Soft Condensed MatterSoft Condensed Matter (cond-mat.soft)0210 nano-technologySoft matter
researchProduct

Polymer mixtures in confined geometries: Model systems to explore phase transitions

2005

While binary (A,B) symmetric polymer mixtures ind = 3 dimensions have an unmixing critical point that belongs to the 3d Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for whichT; c ∝N; 5/8 (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, d = 2). When the walls of the thin film are not neutral, but preferentially attract one …

Phase transitionwettingMaterials scienceCondensed matter physicsCapillary condensationPolymersGeneral Physics and AstronomyQuímicaRenormalization groupfinite size scalingMean field theoryCritical point (thermodynamics)ExponentIsing modelphase separationMonte Carlo simulationPhase diagram
researchProduct

Sensitivity of alanine dosimeters with gadolinium exposed to 6 MV photons at clinical doses.

2011

In this study we analyzed the ESR signal of alanine dosimeters with gadolinium exposed to 6 MV linear accelerator photons. We observed that the addition of gadolinium brings about an improvement in the sensitivity to photons because of its high atomic number. The experimental data indicated that the addition of gadolinium increases the sensitivity of the alanine to 6 MV photons. This enhancement was better observed at high gadolinium concentrations for which the tissue equivalence is heavily reduced. However, information about the irradiation setup and of the radiation beam features allows one to correct for this difference. Monte Carlo simulations were carried out to obtain information on …

PhotonESR dosimetryGadoliniumMonte Carlo methodAccelerationBiophysicschemistry.chemical_elementGadoliniumLinear particle acceleratorRadiology Nuclear Medicine and imagingIrradiationRadiometryMonte Carlo simulationAlaninePhotonsRadiationDosimeterAlanineChemistryX-RaysRadiochemistryElectron Spin Resonance SpectroscopyDose-Response Relationship RadiationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Alanine dosimeters gadoliniumLinear ModelsSensitivity (electronics)Monte Carlo MethodRadiation research
researchProduct

The Monte Carlo simulation of the Borexino detector

2017

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readout
researchProduct

Comparison of proton shower developments in the BGO calorimeter of the Dark Matter Particle Explorer between GEANT4 and FLUKA simulations

2020

The DArk Matter Particle Explorer (DAMPE) is a satellite-borne detector for high-energy cosmic rays and $\gamma$-rays. To fully understand the detector performance and obtain reliable physical results, extensive simulations of the detector are necessary. The simulations are particularly important for the data analysis of cosmic ray nuclei, which relies closely on the hadronic and nuclear interactions of particles in the detector material. Widely adopted simulation softwares include the GEANT4 and FLUKA, both of which have been implemented for the DAMPE simulation tool. Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from t…

Physics - Instrumentation and DetectorsProton85Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronDark matterS-General Physics and AstronomyFOS: Physical sciencesCosmic rayNuclear physicsSpectral analysisInstrumentation and Methods for Astrophysics (astro-ph.IM)Monte Carlo simulationPhysicsTp9550Calorimeter (particle physics)96DetectorInstrumentation and Detectors (physics.ins-det)5513Cosmic Rays-n-tParticleHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Finite-size scaling analysis of the anisotropic critical behavior of the two-dimensional Ising model under shear

2010

The critical behavior of the two-dimensional Ising Model with non-conserved order parameter in steady-state shear is studied by large-scale Monte Carlo simulations. Studying the structure factor S(qx,qy) in the disordered phase, the ratio of correlation length exponents νx/νy in the two lattice directions (x,y) is estimated, and the critical temperature is determined as a function of the shear rate as Tc() − Tc(0) ∝ with ≈0.45. Critical exponents β≈0.37, γ≈1.1, ; ν⊥≈0.46, ν∥≈1.38 are roughly compatible with anisotropic hyperscaling.

PhysicsCondensed matter physicsCritical phenomenaMonte Carlo methodGeneral Physics and AstronomyISING MODELShear rateMONTE CARLO SIMULATIONSHEARHigh Energy Physics::ExperimentIsing modelStatistical physicsCRITICAL PHENOMENAAnisotropyStructure factorScalingCritical exponentEPL (Europhysics Letters)
researchProduct

External Noise Effects in Doped Semiconductors Operating Under sub-THz Signals

2012

We study the noise-induced effects on the electron transport dynamics in low-doped n-type GaAs samples by using a Monte Carlo approach. The system is driven by an external periodic electric field in the presence of a random telegraph noise source. The modifications caused by the addition of external fluctuations are investigated by studying the spectral density of the electron velocity fluctuations for different values of the noise parameters. The findings indicate that the diffusion noise in low-doped semiconductors can be reduced by the addition of a fluctuating component to the driving electric field, but the effect critically depends on the features of the external noise source.

PhysicsCondensed matter physicsbusiness.industryMonte Carlo methodQuantum noiseShot noiseSpectral densityStatistical and Nonlinear PhysicsNoise (electronics)Semiconductortransport propertiesElectric fieldfluctuations and noise processeDiffusion (business)businessMonte Carlo simulationMathematical PhysicsReports on Mathematical Physics
researchProduct