Search results for "Nanocarriers"

showing 10 items of 145 documents

Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone

2021

Water-soluble low molecular weight drugs, such as the synthetic glucocorticoid dexamethasone (DXM), can easily leak out of nanocarriers after encapsulation due to their hydrophilic nature and small size. This can lead to a reduced therapeutic efficacy and therefore to unwanted adverse effects on healthy tissue. Targeting DXM to inflammatory cells of the liver like Kupffer cells or macrophages is a promising approach to minimize typical side effects. Therefore, a controlled transport to the cells of interest and selective on-site release is crucial. Aim of this study was the development of a DXM-phosphate-based polyprodrug and the encapsulation in silica nanocontainers (SiO2 NCs) for the red…

Biological studiesChemistryAnti-Inflammatory AgentsHealthy tissueSilicon DioxideControlled releaseDexamethasoneEncapsulation (networking)Delayed-Action PreparationsmedicineBiophysicsGeneral Materials ScienceNanocarriersLinkerGlucocorticoidsDexamethasonemedicine.drug
researchProduct

Radiation-engineered functionalized nanogels as platform for biomedical nanocarriers and bio-hybrid, hierarchically assembled nanostructures

2011

Radiation technologies can be considered as choice methodologies for the creation of new functional materials at the nanoscale, the challenge being now the integration of these and other novel nanomaterials into new materials and products. The possibility of generating nanoscalar PVP-based hydrogels particles, with reactive functional groups for subsequent bioconjugation, using industrial type accelerators has been demonstrated. These functional nanoparticles are under evaluation as nanocarriers for targeted release of drugs, but can also be considered as useful building blocks for the assembly of nanostructured materials with controlled architecture. In particular, molecular recognition st…

Biomedical nanocarriersSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Nanoparticles and antigen-specific T-cell therapeutics: A comprehensive study on uptake and release

2015

Aim: T lymphocytes are used as cellular therapeutics in many disease entities including cancer. We investigated the uptake and retention of nanoparticles (NPs) by these nonphagocytic cells. Materials & methods: Uptake, release and toxicity of various polymeric NP preparations were analyzed by flow cytometry, confocal laser scanning microscopy and transmission electron microscopy. T-cell effector functions were measured using IFN-γ-ELISPOT and 51Chromium-release assays. Results: Amino-functionalized NPs were efficiently ingested by antigen-specific T cells without adversely influencing effector functions. NPs were stored in membrane-surrounded vesicles, with major proportions released e…

CD4-Positive T-LymphocytestumorMaterials sciencePolymersT cellBiomedical EngineeringT lymphocytesMedicine (miscellaneous)BioengineeringDevelopmentCD8-Positive T-LymphocytesEndocytosisFlow cytometryCell LineCell therapyDrug Delivery SystemsMicroscopy Electron TransmissionIn vivocell imagingmedicineNP releaseAnimalsHumansGeneral Materials ScienceDrug CarriersMicroscopy Confocalmedicine.diagnostic_testVesicletechnology industry and agricultureleukemiacellular therapyEndocytosisMice Inbred C57BLDrug Liberationmedicine.anatomical_structureImmunologyDrug deliverydrug deliveryBiophysicsnanoparticlesNanocarriers
researchProduct

Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells.

2020

Herein, we report the synthesis of carbohydrate and glycodendron structures for dendritic cell targeting, which were subsequently bound to hydroxyethyl starch (HES) nanocapsules prepared by the inverse miniemulsion technique. The uptake of the carbohydrate-functionalized HES nanocapsules into immature human dendritic cells (hDCs) revealed a strong dependence on the used carbohydrate. A multivalent mannose-terminated dendron was found to be far superior in uptake compared to the structurally more complex oligosaccharides used.

CellcarbohydratesBlood DonorsHydroxyethyl starch010402 general chemistryLigands01 natural sciencesNanocapsulesArticleHydroxyethyl Starch DerivativesDrug Delivery SystemsDendrimermedicineHumanslcsh:QH301-705.5Cells Cultured010405 organic chemistryChemistrynanocapsulesBiological TransportGeneral MedicineDendritic cellDendritic CellsCarbohydrate0104 chemical sciencesMiniemulsionmedicine.anatomical_structurelcsh:Biology (General)BiophysicsglycodendronsNanocarrierscell targetingmedicine.drugCells
researchProduct

Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation.

2013

In this work we studied various nanoformulations of resveratrol in phospholipid vesicles. Conventional phophatidylcholine liposomes were prepared and characterized in parallel with PEVs (Penetration Enhancer-containing Vesicles) obtained by adding one of eight selected amphiphilic penetration enhancers (PEs; 0.2% w/v; HLB range 1-16) to the composition. All vesicles were around 100 nm, negatively charged (∼-30 mV) and able to incorporate resveratrol in good yields (>74%). The structure and the lamellar self-organization of the vesicles were investigated by Transmission Electron Microscopy (TEM) and Small and Wide Angle X-ray Scattering (SWAXS). These analyses showed that the lamellarity of …

Chemical PhenomenaDPPHChemistry PharmaceuticalResveratrolAntioxidantschemistry.chemical_compoundColloidColloid and Surface ChemistryDrug StabilityMicroscopy Electron TransmissionPicratesX-Ray DiffractionAmphiphileStilbenesPhysical and Theoretical ChemistryUnilamellar LiposomesLiposomeDrug CarriersChromatographyChemistryVesicleBiphenyl CompoundsSurfaces and InterfacesGeneral MedicinePenetration (firestop)ResveratrolNanoparticlesNanocarriersBiotechnologyColloids and surfaces. B, Biointerfaces
researchProduct

Multifunctional nanocarriers for biomedical applications

2013

Polymeric vesicles (Pluronic ® L-121) loaded with magnetic nanoparticles (MNP) and an anti-cancer drug (camptothecin) were prepared continuously in a micro mixing device. Characterization by TEM confirmed the successful incorporation of the MNP and DLS measurements showed a relatively narrow size distribution of the hybrid polymersomes. A very high drug loading of camptothecin (100 μg/ml in the polymersome formulation) was reached and a drug release study of loaded magnetic polymersomes has shown a sustained camptothecin release over several days. Carboxylation of Pluronic ® L-121 was performed and enabled a further surface functionalization with bombesin, a 14 amino acid peptide, which bin…

ChemistryPolymersomeDrug deliverymedicineGastrin-releasing peptide receptorBiophysicsNanotechnologyNanocarriersPoloxamerPreclinical imagingCamptothecinmedicine.drugAlexa FluorColloidal Nanocrystals for Biomedical Applications VIII
researchProduct

Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene …

2019

Abstract Hypothesis The use of non-viral vectors for gene therapy is hindered by their lower transfection efficiency and their lacking of self-track ability. Experiments This study aims to investigate the biological properties of halloysite nanotubes-carbon dots hybrid and its potential use as non-viral vector for oral gene therapy. The morphology and the chemical composition of the halloysite hybrid were investigated by means of high angle annular dark field scanning TEM and electron energy loss spectroscopy techniques, respectively. The cytotoxicity and the antioxidant activity were investigated by standard methods (MTS, DPPH and H2O2, respectively) using human cervical cancer HeLa cells …

Circular dichroismCell SurvivalSurface PropertiesStatic ElectricityAdministration Oral02 engineering and technologyCellular imagingengineering.material010402 general chemistry01 natural sciencesHalloysiteAntioxidantsBiomaterialsHeLaColloid and Surface ChemistryDynamic light scatteringFluorescence microscopeTumor Cells CulturedCarbon dotsAnimalsHumansParticle SizeSettore CHIM/02 - Chimica FisicaDrug CarriersbiologyMolecular StructureHalloysite nanotubesChemistryNanotubes CarbonOptical ImagingGene Transfer TechniquesTransfectionDNASettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologybiology.organism_classificationDark field microscopyDNA interaction0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHalloysite nanotubes Carbon dots DNA interaction Cellular imagingengineeringBiophysicsCattleNanocarriers0210 nano-technologyPorosityHeLa Cells
researchProduct

Protein Corona Mediated Stealth Properties of Biocompatible Carbohydrate‐based Nanocarriers

2018

ClusterinbiologyChemistryProtein Corona02 engineering and technologyGeneral ChemistryCarbohydrate010402 general chemistry021001 nanoscience & nanotechnologyBiocompatible material01 natural sciencesNanocapsules0104 chemical sciencesImmune systemBiophysicsbiology.proteinNanocarriers0210 nano-technologyIsrael Journal of Chemistry
researchProduct

Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers

2016

This is the peer reviewed version of the following article: Vegas, V. G., Lorca, R., Latorre, A., Hassanein, K., Gómez‐García, C. J., Castillo, O., ... & Amo‐Ochoa, P. (2017). Copper (II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie International Edition, 56(4), 987-991, which has been published in final form at https://doi.org/10.1002/anie.201609031. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

Coordination polymerInorganic chemistrySupramolecular chemistryOligonucleotideschemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundColloidchemistry.chemical_classificationOligonucleotideNanoribbonsGeneral MedicineGeneral ChemistryPolymerQuímica021001 nanoscience & nanotechnologyCombinatorial chemistryCopper0104 chemical sciencesThymineCoordination polymerschemistryNanocarriers0210 nano-technologyNanocarriers
researchProduct

Amphiphilic Dendrimers Control Protein Binding and Corona Formation on Liposome Nanocarriers

2020

Amphiphilic polyphenylene dendrimers (PPDs) with distinct lipophilic and positively or negatively charged surface groups were adsorbed onto liposomes and their impact on protein adsorption in blood plasma was studied. The PPD corona reduced binding of specific opsonins and increased the adsorption of proteins controlling cellular uptake based on their surface patches.

DendrimersPolymersSurface PropertiesPlasma protein bindingCatalysisCorona (optical phenomenon)AdsorptionDendrimerAmphiphileMaterials ChemistryHumansLiposomeChemistryMetals and AlloysBlood ProteinsGeneral ChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsLiposomesCeramics and CompositesBiophysicsNanoparticlesProtein CoronaAdsorptionNanocarriersPalladiumProtein BindingProtein adsorption
researchProduct