Search results for "Ordination"

showing 10 items of 1367 documents

Dynamic magnetic materials based on the cationic coordination polymer [Cu(btix)2]n(2n+) [btix = 1,4-bis(triazol-1-ylmethyl)benzene]: tuning the struc…

2012

A three-dimensional coordination polymer, [Cu(btix)(2)(BF(4))(2)](n) [btix = 1,4-bis(triazol-1-ylmethyl)benzene], with antiferromagnetic interactions occurring via the organic ligand, has been prepared and characterized. It has been shown to permit the exchange of anionic species in the crystalline network with modification of the magnetic properties. Coordinated BF(4)(-) can be reversibly exchanged by different anions with (NO(3)(-) and Cl(-)) or without (PF(6)(-) and ClO(4)(-)) dynamic response of the organic ligand, which acts as the only linker between the metal centers. Interestingly, an irreversible exchange occurs with N(3)(-) anions to generate a new coordination polymer, [Cu(btix)(…

AnionsModels MolecularIon exchangeMolecular StructureLigandCoordination polymerPolymersInorganic chemistryCationic polymerizationAb initioCrystallography X-RayMagnetic susceptibilitylaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographyMagnetic FieldschemistrylawCationsOrganometallic CompoundsAntiferromagnetismPhysical and Theoretical ChemistryElectron paramagnetic resonanceCopperInorganic chemistry
researchProduct

The Radical Trap in Atom Transfer Radical Polymerization Need Not Be Thermodynamically Stable. A Study of the MoX3(PMe3)3 Catalysts

2005

The molybdenum(III) coordination complexes MoX(3)(PMe(3))(3) (X = Cl, Br, and I) are capable of controlling styrene polymerization under typical atom transfer radical polymerization (ATRP) conditions, in conjunction with 2-bromoethylbenzene (BEB) as an initiator. The process is accelerated by the presence of Al(OPr(i))(3) as a cocatalyst. Electrochemical and synthetic studies aimed at identifying the nature of the spin trap have been carried out. The cyclic voltammogram of MoX(3)(PMe(3))(3) (X = Cl, Br, I) shows partial reversibility (increasing in the order ClBrI) for the one-electron oxidation wave. Addition of X(-) changes the voltammogram, indicating the formation of MoX(4)(PMe(3))(3) f…

AnionsReaction mechanismRadical polymerization010402 general chemistryPhotochemistry01 natural sciencesBiochemistryRedoxCatalysisStyreneCatalysisStyreneschemistry.chemical_compoundColloid and Surface ChemistryRadical polymerizationOxidationOrganic chemistry[CHIM.COOR]Chemical Sciences/Coordination chemistryRedox reactions010405 organic chemistryAtom-transfer radical-polymerizationGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysis0104 chemical sciences[CHIM.POLY]Chemical Sciences/PolymersPolymerizationchemistryCyclic voltammetry
researchProduct

Experimental and Theoretical Studies of Nonclassical d 0 Cyclopentadienyl Polyhydride Complexes of Molybdenum and Tungsten

1998

Low-temperature protonation of compounds Cp{sup *}MH{sub 5}(PMe{sub 3}) (M = Mo, 1; W, 2) by HBF{sub 4}{center_dot}Et{sub 2}O in CD{sub 2}Cl{sub 2} or CDFCl{sub 2} affords the thermally unstable hexahydride derivatives [Cp{sup *}MH{sub 6}(PMe{sub 3})]{sup +} (M = Mo, 3; W, 4). The corresponding protonation of 1- and 2-d{sup 5} affords 3- and 4-d{sup 5}, respectively. The {Delta}{delta} on going from H{sub 6} to HD{sub 5} is small for both compounds, but positive for 3 and negative for 4, and no isotopic perturbation of resonance (IPR) is observed. The T{sub 1min} at 400 MHz for [Cp{sup *}MH{sub 6}(PMe{sub 3})]{sup +} apparently doubles on going from Mo to W (52 ms for 3 and approximately 10…

AnionsReaction mechanismschemistry.chemical_elementProtonation010402 general chemistryLigands01 natural sciencesInorganic ChemistryCyclopentadienyl complexChemical structureMathematical methodsComputational chemistryMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistry010405 organic chemistryHydrideOrganic Chemistry3. Good health0104 chemical sciencesCrystallographychemistryChemical bondMolybdenumPotential energy surfaceDihydrogen complex
researchProduct

Influence of the anions on the structure and magnetic properties of a series of bis(µ-diphexono)-bridged linear trinuclear copper(II) complexes: an e…

2011

The reaction of H(2)L (N,N'-dimethyl-N,N'-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-ethylenediamine) with different copper salts, in methanol and using a H(2)L/Cu = 2 : 3 molar ratio, led to four new bis(μ-diphenoxo)-bridged Cu(3) complexes of general formula [{Cu(S)(μ-L)}(2)Cu(H(2)O)(2n)]X(2) (S = CH(3)OH, n = 1 and X = BF(4)(-) for (1) or ClO(4)(-) for (2); S = Br(3)(-) anion and n = 1 without any X species for (3); S = H(2)O, n = 0 and X = NO(3)(-) for (4)). The use in the same reaction conditions of 4,4'-bipyridine (4,4'-bipy) as connector led to the chain complex [{Cu(μ-4,4'-bipy)(0.5)(μ-L)}(2)Cu(H(2)O)(2n)](ClO(4))(2)·17H(2)O (5). The structure of the centrosymmetric trinuclear unit in …

AnionsSteric effectsChemistryInorganic chemistryMolecular Conformationchemistry.chemical_elementEthylenediamineModels TheoreticalCrystallography X-RayCopperMagnetic susceptibilityInorganic ChemistryMetalMagneticsCrystallographychemistry.chemical_compoundCoordination Complexesvisual_artOctahedral molecular geometryAtomvisual_art.visual_art_mediumAntiferromagnetismta116CopperDalton Transactions
researchProduct

Recent advances in electrochemical meso- and β-functionalization of porphyrins and electrografting of diazonium porphyrins

2020

Abstract Recent studies on electrochemical meso- and β-functionalization of porphyrins and electrografting of diazonium porphyrin are presented. First, the electrochemical oxidative C–C coupling between porphyrins will be presented, followed by the intermolecular and intramolecular meso- and β-substitutions of porphyrins. Then, the latest results on diazonium porphyrin electrografting will be reviewed.

Anodic nucleophilic substitution02 engineering and technology010402 general chemistryPhotochemistryElectrochemistry01 natural sciencesDiazonium-porphyrin electrograftingAnalytical ChemistryPorphyrinchemistry.chemical_compoundOrganic electrosynthesis[CHIM.ANAL]Chemical Sciences/Analytical chemistryElectrochemistry[CHIM.COOR]Chemical Sciences/Coordination chemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryIntermolecular forceElectropolymerization[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyPorphyrin0104 chemical sciencesCoupling (electronics)chemistryIntramolecular forceSurface modification0210 nano-technology
researchProduct

Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer.

2012

All in a spin: A series of three-dimensional porous coordination polymer {Fe(dpe)[Pt(CN)(4)]}⋅G (dpe = 1,2-di(4-pyridyl)ethylene; G = phenazine, anthracene, or naphthalene) exhibiting spin crossover and host-guest functions is reported. The magnetic properties of the framework are very sensitive to the chemical nature (aromatic or hydroxilic solvents) and the size of the included guest molecules.

AnthraceneEthyleneMolecular StructureCoordination polymerPolymersOrganic ChemistryPhenazineInorganic chemistryMolecular ConformationGeneral ChemistryMicroporous materialCrystallography X-RayCatalysischemistry.chemical_compoundMagneticschemistrySpin crossoverPolymer chemistryMoleculeFerrous CompoundsNaphthaleneChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Synthesis and structural elucidation of novel antifungal N-(fluorophenyl)piperazinyl benzoxaboroles and their analogues

2019

Abstract Series of novel N-(fluorophenyl)piperazine derivatives of phenylboronic compounds including benzoxaboroles, phenylboronic acids and phenylboronic methyl monoester have been obtained by facile synthetic methods starting from 2-formylphenylboronic acid. Molecular and crystal structures of those novel derivatives have been investigated by single crystal X-ray diffraction method. The Bond Valence Vector Model was used to describe strains in the boron coordination sphere. Microbiological activity of novel benzoxaboroles as well as their corresponding acid analogues against: A. niger, A. terreus, P. ochrochloron, C. tenuis and F. dimerum has been evaluated. The presence of heterocyclic b…

AntifungalorganoboronValence (chemistry)Coordination sphere010405 organic chemistryChemistrymedicine.drug_classphenylboronic acidantifungal activityOrganic ChemistrybenzoxaboroleCrystal structurepiperazine010402 general chemistry01 natural sciencesCombinatorial chemistryfluorophenyl0104 chemical sciencesAnalytical ChemistryInorganic Chemistrychemistry.chemical_compoundPiperazinemedicinePhenylboronic acidSpectroscopyJournal of Molecular Structure
researchProduct

Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy

2019

Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summari…

Antifungalsilver nanoparticlesSilvermedicine.drug_classCancer therapyMetal NanoparticlesNanoparticleAntineoplastic Agents02 engineering and technologyPharmacology010402 general chemistry01 natural sciencesBiochemistrySilver(I) complexesSilver nanoparticleCoordination complexStructure-Activity RelationshipAnti-Infective AgentsCoordination ComplexesDrug DiscoverymedicineHumansAmino Acid SequenceAmino AcidsIonsPharmacologychemistry.chemical_classificationMolecular StructureChemistryOrganic Chemistryantibacterial and anticancer activity of Ag+021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencescysteine and methionine motifsMolecular Medicine0210 nano-technologyProtein BindingCurrent Medicinal Chemistry
researchProduct

Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands.

2015

The Mn2+ coordination chemistry of double scorpiand ligands in which two polyazacyclophane macrocycles have been connected by pyridine, phenanthroline and bipyridine spacers has been studied by potentiometry, paramagnetic NMR and electrochemistry. All ligands show high stability with Mn2+ and the complexes were formed in a wide pH range. DFT calculations support the structures and coordination geometries derived from the study. A remarkable antioxidant activity was evidenced for these systems by the McCord-Fridovich assay and in Escherichiacoli sodAsodB deficient bacterial cells. The three systems were tested as anti-inflammatory drugs in human macrophages measuring the accumulation of cyto…

AntioxidantStereochemistrymedicine.medical_treatmentPhenanthrolineInorganic chemistrychemistry.chemical_elementManganese010402 general chemistryElectrochemistry01 natural sciencesBiochemistryAntioxidantsCoordination complexInorganic ChemistrySuperoxide dismutasechemistry.chemical_compoundBipyridineBacterial ProteinsCoordination ComplexesCell Line TumorPyridinemedicineEscherichia coliHumanschemistry.chemical_classificationManganesebiology010405 organic chemistryChemistrySuperoxide DismutaseMacrophagesAnti-Inflammatory Agents Non-Steroidal0104 chemical sciencesOxidative Stressbiology.proteinJournal of inorganic biochemistry
researchProduct

Complex formation of copper( ), nickel( ) and zinc( ) with ethylophosphonoacetohydroxamic acid: solution speciation, synthesis and structural charac…

2019

We present herein the thermodynamic and X-ray characterisation of a novel ethyl phosphonohydroxamic acid-based Cu( ) metallacrown, predominating in solution in a broad pH range.

Aqueous solutionChemistryLigandCoordination polymerIsothermal titration calorimetry02 engineering and technologyGeneral ChemistryCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesCrystallographychemistry.chemical_compoundDeprotonationMaterials ChemistryChelation0210 nano-technologyMetallacrown
researchProduct