Search results for "RESONANCE IONIZATION"

showing 10 items of 51 documents

RAPTOR : A new collinear laser ionization spectroscopy and laser-radiofrequency double-resonance experiment at the IGISOL facility

2023

RAPTOR, Resonance ionization spectroscopy And Purification Traps for Optimized spectRoscopy, is a new collinear resonance ionization spectroscopy device constructed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyv\"askyl\"a, Finland. By operating at beam energies of under 10 keV, the footprint of the experiment is reduced compared to more traditional collinear laser spectroscopy beamlines. In addition, RAPTOR is coupled to the JYFLTRAP Penning trap mass spectrometer, opening a window to laser-assisted nuclear-state selective purification, serving not only the mass measurement program, but also supporting post-trap decay spectroscopy experiments. Finally,…

Laser resonance ionizationPhysics - Instrumentation and Detectorscollinear laser spectroscopytutkimuslaitteetFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)nucl-exexotic nucleiNuclear Physics - ExperimentIGISOLlaser resonance ionizationNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesydinfysiikkaNuclear Experimentphysics.ins-detExotic nuclei
researchProduct

Resonance laser ionization developments for IGISOL-4

2012

The work presented in this thesis concentrates on the development of the FURIOS laser ion source towards e cient and selective production of low energy radioactive ion beams. This includes design and development of the ion guide and hot cavity catcher systems for laser ion source use, and the development of in-source and in-jet laser spectroscopy techniques. The work has been carried out at the IGISOL facility in the Accelerator laboratory of the University of Jyväskylä. The FURIOS facility was upgraded and developed during the move to the IGISOL-4 facility. The laser transport was greatly improved in order to allow a large fraction of the initial laser intensity to be transported into the …

Laser resonance ionizationlaseritlaserresonanssi-ionisaatioionitioniohjainionisoiva säteilyspektroskopiaNuclear physicsIGISOLLaser spectroscopylaserspektroskopiaydinfysiikkaIon guide
researchProduct

Continuously tunable diamond Raman laser for resonance ionization experiments at CERN

2019

We demonstrate a highly efficient, continuously tunable, diamond Raman laser operating in the blue region of the spectrum. The linewidth and tunability characteristics of a frequency-doubled Ti:Sapphire laser were transferred directly to the Stokes output, offering great potential for spectroscopic applications using an all-solid-state platform.

Materials scienceLarge Hadron Colliderbusiness.industryPhysics::OpticsDiamondengineering.materialLaserlaw.inventionLaser linewidthRaman laserlawResonance ionizationengineeringSapphireOptoelectronicsPhysics::Atomic PhysicsbusinessLaser Congress 2019 (ASSL, LAC, LS&C)
researchProduct

Release Studies of Atomic Technetium

1991

Application of a laser ion source (LIS) is a promising new technique for trace analysis with high efficiency and selectivity. One of the problems which can limit its efficiency attained in practice is the adsorption of sample atoms on the hot walls of the LIS cavity. We have studied the release of atomic technetium from different wall materials at temperatures up to 2500 K. For these investigations resonance ionization of technetium atoms applying a copper vapour pumped dye laser system and γ-spectrometry of 6-h 99mTc have been used. Theoretical calculations of the heat of desorption for technetium on different wall materials are presented and compared with experimental data. Though the res…

Materials sciencechemistryResonance ionizationAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementTrace analysisAtomic physicsTechnetiumWall materialIon sourceAnnalen der Physik
researchProduct

Erratum to ‘Simulation of the relative atomic populations of elements 1≤Z ≤89 following charge exchange tested with collinear resonance ionization sp…

2019

Materials sciencechemistryResonance ionizationchemistry.chemical_elementAtomic physicsSpectroscopyInstrumentationSpectroscopyAtomic and Molecular Physics and OpticsIndiumAnalytical ChemistryCharge exchangeSpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Simulation of the relative atomic populations of elements 1 ≤ Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy…

2019

© 2019 The Authors Calculations of the neutralisation cross-section and relative population of atomic states were performed for ions beams (1 ≤ Z ≤ 89) at 5 and 40 keV incident on free sodium and potassium atoms. To test the validity of the calculations, the population distribution of indium ions incident on a vapour of sodium was measured at an intermediate energy of 20 keV. The relative populations of the 5s 2 5p 2 P 1/2 and 5s 2 5p 2 P 3/2 states in indium were measured using collinear resonance ionization spectroscopy and found to be consistent with the calculations. Charge exchange contributions to high-resolution lineshapes were also investigated and found to be reproduced by the calc…

Materials sciencekaliumElectron captureSodiumPotassiumPopulationspektroskopiachemistry.chemical_elementindium01 natural sciencesAnalytical ChemistryIonatomifysiikkaPhysics in General0103 physical sciencesPhysics::Atomic Physicselectron capturenatrium010306 general physicseducationSpectroscopyInstrumentationsodiumSpectroscopyeducation.field_of_studyatomic populationsIsotopeta114010308 nuclear & particles physicspotassiumcharge exchangeAtomic and Molecular Physics and Opticssemi-classical impact parameterchemistrylaser spectroscopycollinear resonance ionization spectroscopyAtomic physicsIndiumSpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper

2017

A high repetition rate pulsed Ti:sapphire laser injection-locked to a continuous wave seed source is presented. A spectral linewidth of 20 MHz at an average output power of 4W is demonstrated. An enhanced tuning range from 710-920 nm with a single broadband mirror set is realized by the inclusion of a single thin birefringent quartz plate for suppression of unseeded emission. The spectral properties have been analyzed using both a scanning Fabry-P´erot interferometer as well as crossed beam resonance ionization spectroscopy of the hyperfine levels of natural copper. Delayed ionization of the long-lived excited state is demonstrated for increased resolution. For the excited state hyperfine c…

Materials sciencespektroskopiaHigh resolutionchemistry.chemical_elementPhysics::Optics01 natural sciencesInjection lockedIndustrial and Manufacturing EngineeringNuclear magnetic resonance0103 physical sciencessapphire laser [Ti]Physics::Atomic Physics010306 general physicsSpectroscopyInstrumentation010308 nuclear & particles physicsbusiness.industryTi:sapphire laserCondensed Matter PhysicsCopperAtomic and Molecular Physics and OpticsCharacterization (materials science)laseritchemistryResonance ionizationresonance ionization spectroscopyOptoelectronicsbusinessLaser Physics
researchProduct

Production of mass-separated Erbium-169 towards the first preclinical in vitro investigations

2021

The β−-particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclid…

Medicine (General)Health Physics and Radiation Effectselectromagnetic isotope separationEr-169030218 nuclear medicine & medical imagingIsotope separationlaw.invention03 medical and health sciencesR5-9200302 clinical medicineErbium-169lawLASER RESONANCE IONIZATIONIonizationEr-169; activity standardization; electromagnetic isotope separation; in vitro studies; lanthanide-separation; laser resonance ionizationNeutron irradiationOriginal Researchin vitro studiesRadionuclideChemistryRadiochemistryGeneral MedicineLANTHANIDE-SEPARATIONIn vitroELECTROMAGNETIC ISOTOPE SEPARATIONER-169030220 oncology & carcinogenesisRadionuclide therapyMedicinelanthanide-separationactivity standardizationSpecific activitylaser resonance ionizationACTIVITY STANDARDIZATIONIN VITRO STUDIESFrontiers in Medicine
researchProduct

Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development

2021

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd at…

Medicine (General)theranosticsMaterials scienceCERN-MEDICISIon beam530 PhysicsGadolinium610 Medizinchemistry.chemical_elementTerbiumTERBIUMSURFACE PROPERTYIsotope separationlaw.inventionGADOLINIUMR5-920COMPARATIVE STUDYlawIonization610 Medical sciencesLASER RESONANCE IONIZATIONSAPPHIRE LASER [TI]ARTICLERADIOCHEMISTRYisotope separationTANTALUMOriginal ResearchTHERANOSTICSTi:Sapphire laserRISIKO MASS SEPARATORterbiumATOMIC SPECTROMETRYRadiochemistryTi:sapphire laserGeneral Medicine530 PhysikCharacterization (materials science)CONTROLLED STUDYchemistryRISIKO mass separatorION CURRENTMedicineISOTOPE SEPARATIONIONIZATIONAtomic ratiolaser resonance ionizationgadolinium
researchProduct

Ultra Trace Determination Scheme for26Al by High-Resolution Resonance Ionization Mass Spectrometry using a Pulsed Ti:Sapphire Laser

2008

We propose an ultra trace analysis approach for 26Al by high-resolution Resonance Ionization Mass Spectrometry (RIMS) using a pulsed narrow band-width Ti:Sapphire laser. For ensuring efficient ionization and high isotopic selectivity in RIMS of Al, we developed an injection seeded pulsed Ti:Sapphire laser with high repetition rate operation at up to 10 kHz. The laser produced an output power of 2 W and a spectral band-width of ~20 MHz with a repetition rate of 7 kHz. A first demonstration of its performance was done by detecting stable 27Al using RIMS.

Nuclear and High Energy PhysicsChemistryTi:sapphire laserAnalytical chemistryLaserMass spectrometrylaw.inventionAtmospheric-pressure laser ionizationNuclear Energy and EngineeringlawIonizationResonance ionizationSapphireUltra traceJournal of Nuclear Science and Technology
researchProduct