Search results for "SURF"

showing 10 items of 9629 documents

3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process

2019

Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.

010302 applied physicsMaterials scienceSiliconPhysics::Opticschemistry.chemical_elementCrystal growthGeometry02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesInorganic ChemistryMonocrystalline siliconCrystalchemistryCondensed Matter::SuperconductivityFree surface0103 physical sciencesMaterials ChemistryFacet0210 nano-technologyJournal of Crystal Growth
researchProduct

Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures

2017

Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML  = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…

010302 applied physicsMaterials scienceSpin valveIntermetallicAnalytical chemistry02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsNuclear magnetic resonanceImpuritySputtering0103 physical sciencesThermal stabilityThin film0210 nano-technologyInstrumentationSolid solutionVacuum
researchProduct

Effect of oxidation post treatments on TiO2 coating manufactured using reactive very low-pressure plasma spraying (R-VLPPS)

2020

Abstract TiO2 coatings manufactured using reactive very low-pressure plasma spraying (R-VLPPS) were analyzed in different regions related to their position compared to the plasma flame. For that, a screen was used in order to hide an area of the substrate from the direct plasma flux. The coating morphology changed from quasi lamellar structure to highly vapor structure and coatings exhibited obvious modifications in terms of phases and mechanical properties. The effect of oxidation post treatment on the as sprayed coating was then studied by selecting two methods: in situ oxidation post treatment and classical thermal treatment. The two post treatments provided an increase of the main rutil…

010302 applied physicsMaterials scienceSubstrate (chemistry)02 engineering and technologySurfaces and InterfacesGeneral ChemistryPlasmaThermal treatmentengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films[SPI]Engineering Sciences [physics]CoatingRutilePhase (matter)0103 physical sciencesMaterials ChemistryengineeringLamellar structureComposite material0210 nano-technologyPorositySurface and Coatings Technology
researchProduct

Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations

2016

Abstract We report on first-principles calculations of the properties of the MoSe2/Mo(110) interface. Due to mismatch between the lattice parameters of the two structures, different patterns can form at the interface. We have studied the formation energy and the band alignment of six patterns for the MoSe2 (0001)/Mo(110) interface and one pattern for the MoSe2 (11 2 0)/Mo(110) interface. The MoSe2 (11 2 0)/Mo(110) interface is more stable than the MoSe 2 (0001)/Mo(110) interface and in contrast to MoSe2 (0001)/Mo(110), no Schottky barrier forms at MoSe2 (11 2 0)/Mo(110). Doping with Na modifies the band alignment at the interfaces. The Schottky barrier height decreases, provided that a Na a…

010302 applied physicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Schottky barriercu(InDopingMetals and Alloys02 engineering and technologySurfaces and InterfacesInterface[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGa)Se 2MoSe2/Mo(110)Lattice (order)0103 physical sciencesMaterials ChemistryThin film solar cellThin-film solar cell0210 nano-technologySchottky barrier
researchProduct

SiC MOSFET vs SiC/Si Cascode short circuit robustness benchmark

2019

Abstract Nowadays, MOSFET SiC semiconductors short circuit capability is a key issue. SiC/Si Cascodes are compound semiconductors that, in some aspects, show a similar MOSFET behaviour. No interlayer dielectric insulation suggests, in theory, Cascode JFETs as more robust devices. The purpose of this paper is to compare the drift and degradation of two commercial devices static parameters by exposing them to different levels of repetitive 1.5 μs short-circuit campaigns at 85% of its breakdown voltage. Short-circuit time has been set experimentally, and longer times result in catastrophic failure of MOSFET devices due to over self-heating. For this purpose, pre- and post-test short circuit ch…

010302 applied physicsMaterials sciencebusiness.industry020208 electrical & electronic engineering02 engineering and technologyDielectricCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSemiconductorCatastrophic failureRobustness (computer science)0103 physical sciencesMOSFET0202 electrical engineering electronic engineering information engineeringOptoelectronicsBreakdown voltageCascodeElectrical and Electronic EngineeringSafety Risk Reliability and QualitybusinessShort circuitMicroelectronics Reliability
researchProduct

2018

Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…

010302 applied physicsMaterials sciencebusiness.industryDirect currentSurface plasmonPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDrude modelSurface plasmon polaritonAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceOpticschemistryElectrical resistivity and conductivityPhysical vapor deposition0103 physical sciencesOptoelectronics0210 nano-technologybusinessTinPlasmonOptics Express
researchProduct

Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry

2000

A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…

010302 applied physicsMicroprobeMaterials scienceIon beamAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyRutherford backscattering spectrometry01 natural sciencesSpectral lineCondensed Matter::Materials Science0103 physical sciencesSurface roughness0210 nano-technologySpectroscopyJournal of Applied Physics
researchProduct

Charge breeding time investigations of electron cyclotron resonance charge breeders

2018

To qualify electron cyclotron resonance charge breeders, the method that is traditionally used to evaluate the charge breeding time consists in generating a rising edge of the injected beam current and measuring the time in which the extracted multicharged ion beam reaches 90% of its final current. It is demonstrated in the present paper that charge breeding times can be more accurately measured by injecting short pulses of 1 + ions and recording the time resolved responses of N + ions. This method is used to probe the effect of the 1 + ion accumulation in the plasma known to disturb the buffer gas plasma equilibrium and is a step further in understanding the large discrepancies reported in…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhysics and Astronomy (miscellaneous)ta114syklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]electronsCharge (physics)Surfaces and Interfacesresonanssielektronit7. Clean energy01 natural sciencesElectron cyclotron resonance010305 fluids & plasmasresonance0103 physical sciencescharge breederslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityAtomic physicscyclotronsReview Articles
researchProduct

Investigation of ZrO[sub 2]–Gd[sub 2]O[sub 3] Based High-k Materials as Capacitor Dielectrics

2010

Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity…

010302 applied physicsPermittivityMaterials scienceRenewable Energy Sustainability and the EnvironmentAnalytical chemistryEquivalent oxide thickness02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionElectric field0103 physical sciencesMaterials ChemistryElectrochemistry0210 nano-technologyCurrent densityLeakage (electronics)High-κ dielectricJournal of The Electrochemical Society
researchProduct

Single crystal-like thin films of blue bronze

2021

Abstract Pulsed laser deposition technique was employed to grow thin films of K 0.3 M o O 3 on A l 2 O 3 (1-102) and S r T i O 3 (510) substrates. Structural and imaging characterization revealed good quality films with well oriented grains of few microns in length. Both non-selective (transport) and order-selective (femtosecond pump-probe spectroscopy) probes revealed charge density wave properties that are very close to those of the single crystals. The films exhibit metal-semiconductor phase transition in resistivity, pump-probe data show phase transition at the same temperature as the single crystal and the threshold for the photo-induced phase transition is approximately the same as in…

010302 applied physicsPhase transitionMaterials scienceMetals and AlloysAnalytical chemistry02 engineering and technologySurfaces and Interfaces021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulsed laser depositionBlue bronze (BB) ; Charge density waves (CDW) ; Thin films ; Single crystal-like ; Ultrafast pump-probe spectroscopyElectrical resistivity and conductivity0103 physical sciencesFemtosecondMaterials ChemistryThin film0210 nano-technologySpectroscopySingle crystalCharge density waveThin Solid Films
researchProduct