Search results for "Self-Assembly"

showing 10 items of 438 documents

Self-assembly of a M4L6 complex with unexpected S4 symmetry

2014

Using 1,4-diaminobenzene and 2-formylpyridine as simple building blocks results in a 1D ligand (rod, L2) to 2D (M4L4 grid, C1) to 3D (S4 symmetrical M4L6, C2) complexes upon sequential addition of Cu(I) and Fe(II) ions. The complex C2 can be seen as the smallest possible pseudo-tetrahedron with S4 symmetry. peerReviewed

M4L6 complexunexpected S4 symmetryself-assembly
researchProduct

A Functionalized Noncovalent Macrocyclic Multiporphyrin Assembly from a Dizinc(II) Bis-Porphyrin Receptor and a Free-Base Dipyridylporphyrin

2003

The bis-porphyrin system ZnP 2 , in which two zinc porphyrins are connected by a phenanthroline linker in an oblique fashion, acts as a bifunctional receptor towards the complexation of free-base meso-5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin (4'-cisDPyP). In solution, NMR spectroscopy evidenced quantitative formation of the tris-porphyrin macrocyclic assembly ZnP 2 (4'-cisDPyP), in which the two fragments are held together by two axial 4'-N(pyridyl)-Zn interactions. The remarkable stability of the edifice (an association constant of about 6 x 10 8 M - 1 was determined by UV/Vis absorption and emission titration experiments in toluene) is due to the almost perfect geometrical match betwe…

Macromolecular SubstancesMetalloporphyrinsPhenanthrolineOrganic ChemistryFree baseGeneral ChemistryNuclear magnetic resonance spectroscopyChromophoreCrystallography X-RayPhotochemistryPorphyrinMass SpectrometryCatalysisZincchemistry.chemical_compoundCrystallographyModels ChemicalchemistrySpectrophotometry UltravioletSelf-assemblySinglet stateBifunctionalChemistry - A European Journal
researchProduct

Self-assembly and alterable relaxivity of an organic cation-encapsulated gadolinium-containing polyoxometalate

2012

A new amphiphilic molecule bearing poly(ethylene oxide) (PEO) and quaternary ammonium group, was designed and synthesized to encapsulate paramagnetic Gd(III)-containing polyoxometalate (Gd-POM) through electrostatic interaction for obtaining a water-soluble organic-inorganic hybrid building block based on POM. The yielding organic cation-encapsulated Gd-POM (OCEP-Gd) complex exhibited water-solubility and amphiphility, leading to the spontaneous self-assembly into a regular vesicular structure with PEO chains towards water phase and POM units locating at the middle. The vesicular aggregate which has a regular monolayer structure, was further studied by means of dynamic light scattering, tra…

Magnetic Resonance Spectroscopyanimal structuresAqueous solutionMaterials scienceEthylene oxideStatic ElectricityContrast MediaWaterGadoliniumNanotechnologyTungsten CompoundsInorganic Chemistrychemistry.chemical_compoundX-Ray DiffractionChemical engineeringchemistryDynamic light scatteringCoordination ComplexesTransmission electron microscopyCationsPhase (matter)MonolayerPolyoxometalatesense organsSelf-assemblyDalton Transactions
researchProduct

Temperature-induced self-assembly of degalactosylated xyloglucan at low concentration

2015

Xyloglucan is a natural polysaccharide having a cellulose-like backbone and hydroxyl groups-rich side-chains. In its native form the polymer is water-soluble and forms gel only in presence of selected co-solutes. When a given fraction of galactosyl residues are removed by enzymatic reaction, the polymer acquires the ability to form a gel in aqueous solution at physiological temperatures, a property of great interest for biomedical/pharmaceutical applications. This work presents data on the effect of a temperature increase on degalactosylated xyloglucan dispersed in water at concentration low enough not to run into macroscopic gelation. Results obtained over a wide interval of length scales …

Materials Chemistry2506 Metals and AlloyMaterials sciencePolymers and PlasticPolymers and Plasticssupramolecular structureNanotechnologybiopolymersstimuli-sensitive polymersCondensed Matter Physicself-assemblyCondensed Matter PhysicsTemperature inducedXyloglucanchemistry.chemical_compoundchemistrybiopolymerMaterials Chemistrystimuli-sensitive polymerSelf-assemblySettore CHIM/07 - Fondamenti Chimici Delle TecnologiePhysical and Theoretical ChemistryVolume concentration
researchProduct

Self-assembled PAA-based nanoparticles as potential gene and protein delivery systems

2012

A series of nanoparticles is prepared via layer-by-layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptabl…

Materials Chemistry2506 Metals and AlloysLayer-by-layer assemblyPolymers and PlasticLightRotationStatic ElectricityElectron Spin Resonance SpectroscopyGene Transfer TechniquesBioengineeringSelf-assemblyHydrogen-Ion ConcentrationBiomaterialCell LineMolecular WeightDrug Delivery SystemsNanoparticlePolyaminesAnimalsNanoparticlesScattering RadiationSpin LabelsGene deliveryParticle SizeZeta-potentialBiotechnology
researchProduct

Temporal control of xyloglucan self-assembly into layered structures by radiation-induced degradation

2016

Partially degalactosylated xyloglucan from tamarind seeds (Deg-XG) is a very appealing biopolymer for the production of in situ gelling systems at physiological temperature. In this work, we observe that the morphology of hydrogels evolves towards high degrees of structural organization with time, yielding to dense stacks of thin membranes within 24 h of incubation at 37 °C. We also explore the possibility offered by gamma irradiation of controlling the time scale of this phenomenon, the final morphology and mechanical properties of the system. Structural and molecular modifications of Deg-XG with dose are investigated by FTIR, dynamic light scattering (DLS) and rotational viscosimetry. The…

Materials Chemistry2506 Metals and AlloysTime FactorsMaterials scienceMorphology (linguistics)Polymers and PlasticsCell Survival02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesPolymerizationNeuroblastomachemistry.chemical_compoundBiopolymersDynamic light scatteringCell Line TumorMaterials TestingSpectroscopy Fourier Transform InfraredMaterials ChemistryHumansHigh energy-irradiationComposite materialFourier transform infrared spectroscopyXyloglucanGlucansPolymers and PlasticViscosityMedicine (all)Organic ChemistryTemperatureHydrogelsSelf-assembly021001 nanoscience & nanotechnology0104 chemical sciencesXyloglucanHydrogelMembranechemistryChemical engineeringGamma RaysSelf-healing hydrogelsengineeringXylansThermoresponsive biopolymerBiopolymerSelf-assemblyShear Strength0210 nano-technologyCarbohydrate Polymers
researchProduct

Chemically Fueled Block Copolymer Self‐Assembly into Transient Nanoreactors**

2021

In chemically fueled supramolecular materials, molecular self-assembly is coupled to a fuel-driven chemical reaction cycle. The fuel-dependence makes the material dynamic and endows it with exciting properties like adaptivity and autonomy. In contrast to the large work on the self-assembly of small molecules, we herein designed a diblock copolymer, which self assembles into transient micelles when coupled to a fuel-driven chemical reaction cycle. Moreover, we used these transient block copolymer micelles to locally increase the concentration of hydrophobic reagents and thereby function as a transient nanoreactor.

Materials science010405 organic chemistryMechanical EngineeringSupramolecular chemistryEnergy Engineering and Power TechnologyNanoreactorManagement Science and Operations Research010402 general chemistry01 natural sciencesSmall moleculeChemical reactionMicelle0104 chemical sciencesChemical engineeringReagentCopolymerSelf-assemblyChemSystemsChem
researchProduct

Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithog…

2017

We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 16…

Materials scienceAcoustics and UltrasonicsNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesphononic crystalthree-dimensional lithographyLithographyPhotonic crystalelectron-beam lithographyself-assemblyColloidal crystal021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsResistX-ray lithographycolloidal crystal0210 nano-technologyElectron-beam lithographyNext-generation lithographyMaskless lithographyphotonic crystalcross-linking
researchProduct

Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

2017

Summary Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation …

Materials scienceBlock copolymerGeneral Chemical Engineering116 Chemical sciencesSupramolecular chemistryNanotechnologyblock copolymer02 engineering and technologyhierarchical self-assembly010402 general chemistry01 natural sciencesBiochemistryMicelleArticleSDG9: Industry innovation and infrastructuresupramolecular complexesMaterials ChemistryCopolymerEnvironmental ChemistryNon-covalent interactionsMoleculeLamellar structureta116chemistry.chemical_classificationHalogen bondta114Biochemistry (medical)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesblock copolymerschemistryChemical engineeringIndustry innovation and infrastructure [SDG9]nanofabricationhalogen bondSettore CHIM/07 - Fondamenti Chimici Delle TecnologieSelf-assembly0210 nano-technology
researchProduct

Reversible Physical Network Stabilized Ferroelectric Liquid Crystals

2001

Materials scienceChemical engineeringMechanics of MaterialsLiquid crystalMechanical EngineeringGeneral Materials ScienceSelf-assemblyFerroelectricityThermotropic crystalPhysical networkAdvanced Materials
researchProduct