Search results for "Semiconductor device"

showing 10 items of 60 documents

Selective modification of the band gaps of GaInNas/GaAs structures by quantum well intermixing techniques

2003

We report the unambiguous demonstration of controlled quantum well intermixing (QWI) in the technologically important GaInNAs/ GaAs 1.3 mum material system. QWI is a key technique to selectively modify the band gap of quantum wells, which has found broad application in semiconductor lasers and photonic integrated circuits (PICs). Extending such technology to GaInNAs/GaAs structures is highly desirable due to the technologically advantageous properties of this material system. Here, we investigate well-characterized GaInNAs quantum well material which has been annealed "to saturation" before QWI processing to allow unambiguous interpretation of results. After RTA at 700 degreesC for similar …

Quantum well intermixing GaInNAs Photonic integrated circuitsPhotoluminescenceMaterials scienceBand gapbusiness.industryPhotonic integrated circuitBioengineeringSemiconductor deviceSemiconductor laser theoryBiomaterialsSurface coatingMechanics of MaterialsOptoelectronicsPhotoluminescence excitationbusinessQuantum wellMaterials Science and Engineering: C
researchProduct

Investigation on Cascode Devices for High Frequency Electrical Drives Applications

2019

In the last years a widespread development in the market of electrical drives employing high-speed electrical machines has occurred in various industrial fields, due to the extremely high power density that can be reached. Nevertheless, to maintain output power quality without using bulky filtering networks, DC-AC converters should be controlled by means of higher PWM switching frequencies. New switching device technologies, such as Field Effect Transistors based on SiC and GaN, are therefore gathering momentum in order to comply with the higher working frequencies. To operate under high frequencies and at the same time at high voltage levels, alternative circuital configurations for switch…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniMomentum (technical analysis)High voltage deviceComputer sciencebusiness.industry020209 energyCascode020208 electrical & electronic engineeringElectrical engineeringHigh voltage02 engineering and technologyConvertersSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciHigh frequencyPower transistors0202 electrical engineering electronic engineering information engineeringField-effect transistorPower semiconductor deviceCascodebusinessFrequency modulationPulse-width modulation
researchProduct

A Compact SPICE Model for Organic TFTs and Applications to Logic Circuit Design

2016

This work introduces a compact DC model developed for organic thin film transistors (OTFTs) and its SPICE implementation. The model relies on a modified version of the gradual channel approximation that takes into account the contact effects, occurring at nonohmic metal/organic semiconductor junctions, modeling them as reverse biased Schottky diodes. The model also comprises channel length modulation and scalability of drain current with respect to channel length. To show the suitability of the model, we used it to design an inverter and a ring oscillator circuit. Furthermore, an experimental validation of the OTFTs has been done at the level of the single device as well as with a discrete-…

Transistor modelMaterials scienceFlexible electronics; organic thin film transistors; SPICE modelingSpiceSemiconductor device modelingHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyRing oscillatorIntegrated circuit01 natural scienceslaw.inventionComputer Science::Hardware ArchitectureComputer Science::Emerging Technologieslaw0103 physical sciencesElectronic engineeringHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringFlexible electronics010302 applied physicsChannel length modulationbusiness.industryTransistorSchottky diodeCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyFlexible electronicsComputer Science Applicationsorganic thin film transistorsLogic gateSPICE modelingInverterOptoelectronics0210 nano-technologybusinessHardware_LOGICDESIGNIEEE Transactions on Nanotechnology
researchProduct

Physically-consistent parameterization in the modeling of solar photovoltaic devices

2011

This research tests the standard one-diode model of a crystalline-Si photovoltaic cell, focusing on the physical accuracy. In particular, the (apparent) shunt resistance and the diode ideality factor are studied. Current-voltage characteristics of illuminated crystalline-Si photovoltaic modules are analyzed, and some limits of applicability of the standard model are given. Typical values of the ideality factor for crystalline-Si devices are derived from own experimental data as well as from recently published literature. It is shown that the contribution of the apparent shunt resistance is only significant for cell voltages below about 0.45 V, and depends on irradiance. This result is consi…

business.industryPhotovoltaicsComputer sciencePower electronicsPhotovoltaic systemSemiconductor device modelingElectrical engineeringElectronic engineeringIrradiancebusinessDiodeStandard model (cryptography)Voltage2011 IEEE Trondheim PowerTech
researchProduct

Review Article: Recommended reading list of early publications on atomic layer deposition - Outcome of the "virtual Project on the History of ALD"

2017

gas-solid reactionsemiconductor manufacturingatomsta114thin-film deposition techniqueposter presentationsvirtual projectsinorganic materialssoviet unionta216depositionunited kingdomsemiconductor device manufactureJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
researchProduct

Molecular dynamics simulations of heavy ion induced defects in SiC Schottky diodes

2018

Heavy ion irradiation increases the leakage current in reverse-biased SiC Schottky diodes. This letter demonstrates, via molecular dynamics simulations, that a combination of bias and ion-deposited energy is required to produce the degradation. Peer reviewed

mallintaminenMaterials sciencePOWER DIODESSchottky diodesSINGLE-EVENT BURNOUT114 Physical sciences01 natural sciencesIonpower semiconductor devicesBARRIER DIODESTHERMAL-DAMAGEchemistry.chemical_compoundMolecular dynamicspuolijohteetsilicon carbide0103 physical sciencesSilicon carbideIrradiationElectrical and Electronic EngineeringSafety Risk Reliability and Quality010302 applied physicsta114ta213ionit010308 nuclear & particles physicsbusiness.industryionisoiva säteilyINORGANIC INSULATORSSchottky diodemodelingHeavy ion irradiationIRRADIATIONElectronic Optical and Magnetic MaterialschemistryionsOptoelectronicsDegradation (geology)Heavy ionbusinession radiation effectsIEEE Transactions on Device and Materials Reliability
researchProduct

Molecular dynamics simulations of heavy ion induced defects in SiC Schottky diodes

2018

Heavy ion irradiation increases the leakage current in reverse-biased SiC Schottky diodes. This work demonstrates, via molecular dynamics simulations, that a combination of bias and ion-deposited energy is required to produce the degradation peerReviewed

mallintaminenpower semiconductor devicesionitsilicon carbidepuolijohteetionisoiva säteilySchottky diodesmodelingion radiation effects
researchProduct

Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence

2017

Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved. peerReviewed

power semiconductor devicesmallintaminenpiiionitsilicon carbideschottky diodesmodelingdioditsäteilyion radiation effects
researchProduct

Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes

2016

Under heavy-ion exposure at sufficiently high reverse bias voltages silicon carbide (SiC) Schottky diodes are observed to exhibit gradual increases in leakage current with increasing ion fluence. Heavy-ion exposure alters the overall reverse current-voltage characteristics of these diodes, leaving the forward characteristics practically unchanged. This paper discusses the charge transport mechanisms in the heavy-ion damaged SiC Schottky diodes. A macro model, describing the reverse current-voltage characteristics in the degraded SiC Schottky diodes is proposed. peerReviewed

silicon carbide (SiC)Materials scienceAnnealing (metallurgy)Schottky barrierSchottky diodesMetal–semiconductor junction01 natural sciencesTemperature measurementpower semiconductor deviceschemistry.chemical_compoundstomatognathic system0103 physical sciencesSilicon carbidecurrent-voltage characteristicsElectrical and Electronic EngineeringSafety Risk Reliability and QualityDiode010302 applied physicsta114ta213010308 nuclear & particles physicsbusiness.industrySchottky diodemodelingElectronic Optical and Magnetic MaterialschemistryOptoelectronicsbusinession radiation effectsVoltageIEEE Transactions on Device and Materials Reliability
researchProduct

Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future.

2020

As the need for green and effective utilization of energy continues to grow, the advancements in the energy and power electronics industry are constantly driven by this need, as both industries are intertwined for obvious reasons. The developments in the power electronics industry has over the years hinged on the progress of the semiconductor device industry. The semiconductor device industry could be said to be on the edge of a turn into a new era, a paradigm shift from the conventional silicon devices to the wide band gap semiconductor technologies. While a lot of work is being done in research and manufacturing sectors, it is important to look back at the past, evaluate the current progr…

thyristorsEngineeringinsulated gate bipolar transistorslcsh:Mechanical engineering and machinery02 engineering and technologyReviewbipolar transistors01 natural sciencesElectronic switchpower semiconductor devicesPower electronics0103 physical sciences0202 electrical engineering electronic engineering information engineeringPower semiconductor devicelcsh:TJ1-1570Electrical and Electronic Engineering010302 applied physicsbusiness.industrypower semiconductor switchesMechanical Engineering020208 electrical & electronic engineeringThyristorSemiconductor deviceVDP::Teknologi: 500Work (electrical)Control and Systems EngineeringParadigm shiftState (computer science)businessTelecommunicationspower transistorsMicromachines
researchProduct