Search results for "TECNOLOGICO"
showing 10 items of 440 documents
Hepatocyte-targeted fluorescent nanoparticles based on a polyaspartamide for potential theranostic applications
2015
Abstract Here, the synthesis of a galactosylated amphiphilic copolymer bearing rhodamine (RhB) moieties and its use for the preparation of polymeric fluorescent nanoparticles for potential applications in therapy and diagnosis are described. To do this, firstly, a fluorescent derivative of α,β-poly( N -2-hydroxyethyl)- d , l -aspartamide (PHEA) was synthesized by chemical reaction with RhB, and with polylactic acid (PLA), to obtain PHEA-RhB-PLA. Then, the derivatization of PHEA-RhB-PLA with GAL-PEG-NH 2 allows obtaining PHEA-RhB-PLA-PEG-GAL copolymer, with derivatization degrees in -PLA and -PEG-GAL equal to 1.9 mol% and 4.5 mol%, respectively. Starting from this copolymer, liver-targeted f…
An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties.
2021
Here, an asymmetric double-layer membrane has been designed and fabricated by electrospinning as a tool for a potential wound healing application. A hydrophobic layer has been produced by using a polyurethane-polycaprolactone (PU-PCL) copolymer and loaded with the antibacterial ciprofloxacin whereas an ion responsive hydrophilic layer has been produced by using an octyl derivative of gellan gum (GG-C8) and polyvinyl alcohol (PVA) and loaded with the growth factor FGF-2. This study investigated how the properties of this asymmetric membrane loaded with actives, were influenced by the ionotropic crosslinking of the hydrophilic layer. In particular, the treatment in DPBS and the crosslinking i…
Light Scattering as an Easy Tool to Measure Vesicles Weight Concentration
2020
Over the last few decades, liposomes have emerged as promising drug delivery systems and effective membrane models for studying biophysical and biological processes. For all applications, knowing their concentration after preparation is crucial. Thus, the development of methods for easily controlling vesicles concentration would be of great utility. A new assay is presented here, based on a suitable analysis of light scattering intensity from liposome dispersions. The method, tested for extrusion preparations, is precise, easy, fast, non-destructive and uses a tiny amount of sample. Furthermore, the scattering intensity can be measured indifferently at different angles, or even by using the…
Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery
2014
Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the othe…
Amphiphilic inulin graft co-polymers as self assembling micelles for doxorubicin delivery
2020
This paper reports the synthesis and characterization of a new amphiphilic inulin graft copolymer able to self-assemble in water into a micelle type structure and to deliver the anticancer model drug doxorubicin. For this aim, inulin was chemically modified in the side chain with primary amine groups (INU-EDA) and these were used as reactive moieties for the conjugation of poly ethylene glycol 2000 and succinyl-ceramide. The CMC of obtained amphiphilic inulin derivatives (INU-ceramide and INU-ceramide-PEG2000) was measured by means of fluorescence analysis using pyrene as the fluorescent probe. The obtained micelles were characterized by DLS and AFM analysis and the ability to release the l…
Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain
2021
Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The…
Buccal delivery of Methimazole as an alternative means to optimize drug bioavailability: permeation studies and matrix system design
2012
The aim of this study was to investigate the potential for systemic administration of Methimazole (MMI) through the buccal mucosa as an alternative route for drug delivery. Considering that the most important restriction in buccal drug delivery could be the low permeability of the mucosa, the ability of MMI to cross the mucosal barrier was assessed. Permeation of MMI through porcine buccal mucosa was investigated ex vivo using Franz type diffusion cells, buffer solution simulating saliva or natural human saliva as donor phase. The collected data suggested that buccal mucosa does not hinder MMI diffusion and the drug crosses the membrane (Js = 0.068 mg cm-2 h-1 and Kp = 0.065 cm h-1). Matrix…
Identification of microplastics using 4‐dimethylamino‐4′‐nitrostilbene solvatochromic fluorescence
2021
In this work, we introduce the use of 4-dimethylamino-4'-nitrostilbene (DANS) fluorescent dye for applications in the detection and analysis of microplastics, an impendent source of pollution made of synthetic organic polymers with a size varying from less than 5 mm to nanometer scale. The use of this dye revealed itself as a versatile, fast and sensitive tool for readily discriminate microplastics in water environment. The experimental evidences herein presented demonstrate that DANS efficiently absorbs into a variety of polymers constituting microplastics, and its solvatochromic properties lead to a positive shift of the fluorescence emission spectrum according to the polarity of the poly…
Scaffold and scaffold-free self-assembled systems in regenerative medicine.
2016
Self-assembly in tissue engineering refers to the spontaneous chemical or biological association of components to form a distinct functional construct, reminiscent of native tissue. Such self-assembled systems have been widely used to develop platforms for the delivery of therapeutic and/or bioactive molecules and various cell populations. Tissue morphology and functional characteristics have been recapitulated in several self-assembled constructs, designed to incorporate stimuli responsiveness and controlled architecture through spatial confinement or field manipulation. In parallel, owing to substantial functional properties, scaffold-free cell-assembled devices have aided in the developm…
A NANOPARTICULATE DRUG-DELIVERY SYSTEM FOR RIVASTIGMINE: PHYSICO-CHEMICAL AND IN VITRO BIOLOGICAL CHARACTERIZATION
2007
The preparation and characterization of surface-PE Gylated polymeric nanoparticles are described. These systems were obtained by UV irradiation of PHM and PHM-PEG(2000) as an inverse microemulsion, using an aqueous solution of the PHM/PHM-PEG(2000) copolymer mixture as the internal phase and triacetin saturated with water as the external phase, and characterized by dimensional analysis, zeta-potential measurements and XPS. in vitro biological tests demonstrated their cell compatibility and their ability to escape from phagocytosis. Rivastigmine was encapsulated into the nanoparticle structure and drug-release profiles from loaded samples were investigated in PBS at pH = 7.4 and human plasma.