Search results for "TRID"

showing 10 items of 753 documents

Atomic Layer Deposition of Localized Boron- and Hydrogen-Doped Aluminum Oxide Using Trimethyl Borate as a Dopant Precursor

2020

Atomic layer deposition (ALD) of boron-containing films has been mainly studied for use in two-dimensional materials and for B doping of Si. Furthermore, lithium-containing borates show great promi...

Materials scienceHydrogenDopantGrapheneTrimethyl borateGeneral Chemical EngineeringInorganic chemistryDopingchemistry.chemical_element02 engineering and technologyGeneral ChemistryNitride010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionAtomic layer depositionchemistry.chemical_compoundchemistrylawMaterials Chemistry0210 nano-technologyBoronChemistry of Materials
researchProduct

Dopant radial inhomogeneity in Mg-doped GaN nanowires

2018

International audience; Using atom probe tomography, it is demonstrated that Mg doping of GaN nanowires grown by Molecular Beam Epitaxy results in a marked radial inhomogeneity, namely a higher Mg content in the periphery of the nanowires. This spatial inhomogeneity is attributed to a preferential incorporation of Mg through the m-plane sidewalls of nanowires and is related to the formation of a Mg-rich surface which is stabilized by hydrogen. This is further supported by Raman spectroscopy experiments which give evidence of Mg-H complexes in the doped nanowires. A Mg doping mechanism such as this, specific to nanowires, may lead to higher levels of Mg doping than in layers, boosting the po…

Materials scienceHydrogenNanowirechemistry.chemical_elementBioengineering02 engineering and technologyAtom probe01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciencesGeneral Materials ScienceElectrical and Electronic Engineeringgallium nitride nanowires010302 applied physics[PHYS]Physics [physics]Dopantbusiness.industryMechanical EngineeringDopingGeneral Chemistryspatialinhomogeneity of dopants021001 nanoscience & nanotechnologymagnesium incorporationchemistryatom probe tomographyMechanics of MaterialsRaman spectroscopysymbolsOptoelectronics0210 nano-technologyRaman spectroscopybusinessMolecular beam epitaxyLight-emitting diode
researchProduct

Properties of AlN grown by plasma enhanced atomic layer deposition

2011

Abstract The influence of growth parameters on the properties of AlN films fabricated by plasma-enhanced atomic layer deposition using trimethylaluminum and ammonia precursors was investigated. The atomic concentrations, refractive index, mass density, crystallinity and surface roughness were studied from the films grown in the temperature range of 100–300 °C with plasma discharge times between 2.5 and 30 s. The AlN films were shown to be hydrogen rich having H concentrations in the range of 13–27 at.% with inverse dependence on the growth temperature. The carbon and oxygen concentrations in the films were less than 2.6% and 0.2%, respectively. The refractive index and mass density of the f…

Materials scienceHydrogenta221Analytical chemistryGeneral Physics and Astronomychemistry.chemical_elementOxygenPlasmaAtomic layer depositionCrystallinityta318ta216ta116Aluminum nitrideta213ta114Surfaces and InterfacesGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidAtomic Layer DepositionchemistryCarbonRefractive indexApplied Surface Science
researchProduct

Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

2014

We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the lowfrequency (electronic) dielectric constant e1 . Negative pressure coefficients of -8.8 × 10-2 GPa-1 and -14.8 × 10-2 GPa-1 are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed …

Materials scienceIndium nitridePhysics and Astronomy (miscellaneous)Condensed matter physicsBand gapHydrostatic pressureRefractive indexDielectricHigh pressureCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryBand gapPhononsCritical point phenomenaThin filmElectronic band structureRefractive indexWurtzite crystal structureApplied Physics Letters
researchProduct

Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared

2016

Nonlinear frequency conversion spanning from the ultraviolet to the mid-infrared (beyond 2.4 μm) is experimentally demonstrated in multicladding silicon nitride (𝑆𝑖𝑋𝑁𝑌) waveguides. By adjusting the waveguide cross-section the chromatic dispersion is flattened, which enhances both the efficiency and the bandwidth of the nonlinear conversion. How accurately the dispersion is tailored is assessed through chromatic dispersion measurements and an experiment/simulation comparison of the dispersive waves' wavelength locations. Undesirable fluctuations of both the refractive index and the dimensions of the waveguide during the fabrication process result in a dispersion unpredictability of at l…

Materials scienceIntegrated optics nonlinear optics dispersionPhysics::Optics02 engineering and technologymedicine.disease_cause01 natural scienceslaw.invention010309 opticschemistry.chemical_compoundsymbols.namesakeOpticslaw0103 physical sciencesDispersion (optics)medicinebusiness.industrynonlinear opticsIntegrated opticsStatistical and Nonlinear PhysicsÒptica021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsWavelengthSilicon nitridechemistrysymbolsOptoelectronicsIntegrated optics; nonlinear optics; dispersiondispersion0210 nano-technologybusinessWaveguideRefractive indexUltravioletRaman scatteringPhotonic-crystal fiberJournal of the Optical Society of America B
researchProduct

Gallium nitride thin films as processed by several techniques: Their possible applications for PV-devices

2011

We present in this work the characterization studies carried on GaN — thin films as processed by the Close Spaced Vapor Technique (CSVT), Laser Ablation (LA), and Molecular Beam Epitaxy (MBE), under particular growth parameters for each of the three techniques. The films characterization was performed by x-ray diffraction (X-RD), Photoluminescence (PL), Raman spectroscopy, optical transmission, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). With these results an analysis of the samples was done, with an aim for a possible application of these thin films for PV-devices.

Materials scienceLaser ablationScanning electron microscopeEnergy-dispersive X-ray spectroscopyAnalytical chemistryGallium nitridesymbols.namesakechemistry.chemical_compoundchemistrysymbolsThin filmRaman spectroscopyHigh-resolution transmission electron microscopyMolecular beam epitaxy2011 37th IEEE Photovoltaic Specialists Conference
researchProduct

Structural analysis of W3O/WO3 and TiO/TiO2 periodic multilayer thin films sputter deposited by the reactive gas pulsing process

2012

International audience; DC reactive sputtering was used to deposit titanium and tungsten-based metal/oxide periodic nanometric multilayers using pure metallic targets and Ar + O-2 gas mixture as reactive atmosphere. The innovative technique namely, the reactive gas pulsing process allows switching between the metal and oxide to prepare a periodic multilayered structure with various metalloid concentrations and nanometric dimensions. The same pulsing period was used for each deposition to produce metal-oxide periodic alternations close to 10 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Raman spectroscopy, X-ray diffraction and Energ…

Materials scienceMAGNETRONInorganic chemistryOxidechemistry.chemical_element02 engineering and technologyTungsten01 natural sciencesTUNGSTEN-OXIDE[SPI.MAT]Engineering Sciences [physics]/Materialschemistry.chemical_compoundSputtering0103 physical sciencesWO3Materials ChemistryNITRIDE[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsThin filmHigh-resolution transmission electron microscopy[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010302 applied physicsMetals and AlloysSurfaces and InterfacesSputter deposition021001 nanoscience & nanotechnologyPARTIAL-PRESSURE CONTROLSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTitanium oxideEVAPORATIONchemistryChemical engineeringTITANIUM-OXIDEGROWTHARC DEPOSITION0210 nano-technologyDIOXIDETitanium
researchProduct

Hexagonal boron nitride luminescence dependent on vacuum level and surrounding gases

2015

Abstract Gas sensing properties of hBN powder bulk and nanosize were studied. It was demonstrated that for hBN powders with grain sizes of 70 nm, 1 μm and 5 μm the native defect-induced luminescence observed at 400 nm under 265 nm light excitation and room temperature is sensitive to oxygen gas reducing luminescence intensity. The highest value of luminescence intensity is reached when sample is in vacuum. Results obtained allow conclusion that the hBN powder is prospective for sensing of oxygen gas. Some material properties such as dependence of luminescence intensity on vacuum level and pumping time, ratio of luminescence intensity when sample is in vacuum and gas, its dependence on mater…

Materials scienceMechanical EngineeringAnalytical chemistryHexagonal boron nitrideCondensed Matter PhysicsGrain sizeMechanics of MaterialsGeneral Materials ScienceLight excitationVacuum levelOxygen gasMaterial propertiesLuminescenceIntensity (heat transfer)Materials Research Bulletin
researchProduct

Scale composition and oxidation mechanism of the Ti–46Al–8Nb alloy in air at 700 and 800 °C

2011

It is known that the oxide scale formed on TiAl alloys is generally composed of a mixture of alumina (Al2O3) and titania (TiO2). The presence of niobium changes the activities of Ti and Al and influences the kinetics of oxidation and oxide layer composition. In this work, the Tie46Ale8Nb alloy was subjected to cyclic oxidation in air at 700 � C (for 2 and 24 h) and 800 � C (for 300 h). Scale composition was analyzed by means of different techniques including X-ray photoelectron spectroscopy, X-ray diffraction and secondary ion mass spectroscopy. The scale consisted of several layers. The outer layer was built of alumina (amorphous or with very fine grains), whereas the inner layer e mainly …

Materials scienceMechanical EngineeringDiffusionMetallurgyAlloyMetals and AlloysNiobiumOxideAnalytical chemistrychemistry.chemical_elementGeneral Chemistryengineering.materialTitanium nitrideAmorphous solidchemistry.chemical_compoundchemistryX-ray photoelectron spectroscopyMechanics of MaterialsMaterials ChemistryengineeringLayer (electronics)Intermetallics
researchProduct

Reactive sputtering of nanostructured multilayer coatings and their tribological properties

1999

Abstract The present study describes and reports on reactive sputtering of nanostructured multilayer coatings. A 3 μm coating for instance may contain up to a few thousand bilayers of two different film materials, and in order to achieve this, a substrate holder rotates through two different sputtering zones in an Alcatel SC 650 sputtering equipment with metal and carbon cathodes operating concurrently in the so-called side-by-side configuration. In reactive sputtering of nitrides, reactive nitrogen was controlled very accurately in order to establish controllable points on a total sputtering pressure versus nitrogen flow curve. Nanostructured multilayer coatings of the type MeN/C–N were de…

Materials scienceMetallurgyContext (language use)Surfaces and InterfacesGeneral ChemistrySubstrate (electronics)Nitrideengineering.materialTribologyCondensed Matter PhysicsSurfaces Coatings and FilmsCoatingSputteringPhysical vapor depositionMaterials ChemistryengineeringThin filmComposite materialSurface and Coatings Technology
researchProduct