Search results for "Thin-Films"
showing 10 items of 27 documents
Influence of applied strain on the microstructural corrosion of AlMg2 as-cast aluminium alloy in sodium chloride solution
2012
International audience; The corrosion behavior of ISO AlMg2 (AA5052) was studied at the microscale using the Electrochemical Microcell Technique. The influence of plastic deformation on the corrosion resistance of this alloy was also examined. After polishing, pitting at small copper-enriched precipitates and structural etching were observed. After deformation, numerous slip bands were found in grains. After 5.5% plastic strain, the global electrochemical behavior of samples was significantly affected. Pitting potential was decreased in sites containing slip bands or in sites with large strain gradients (measured using microgauges deposited by lithography).
Light absorption and electrical transport in Si:O alloys for photovoltaics
2010
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was …
Graded Carrier Concentration Absorber Profile for High Efficiency CIGS Solar Cells
2015
We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters-characteristic of such devices-with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depe…
Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant
2022
In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…
Optical modeling of nickel-base alloys oxidized in pressurized water reactor
2012
International audience; The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratificati…
Photoconductive properties of Bi2S3nanowires
2015
The photoconductive properties of Bi2S3 nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm−2. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of individual Bi2S3 nanowires liberated from the AAO membrane were determined and compared with those of arrays of as-produced Bi2S3 nanowires templated inside pores of AAO membrane. The alumina membrane was found to significantly influence the photoconductive properties of the AAO-hosted Bi2S3 nanowires, when compared to liberated from the AAO membrane…
Blistering mechanisms of atomic-layer-deposited AlN and Al2O3 films
2017
Blistering of protective, structural, and functional coatings is a reliability risk pestering films ranging from elemental to ceramic ones. The driving force behind blistering comes from either excess hydrogen at the film-substrate interface or stress-driven buckling. Contrary to the stress-driven mechanism, the hydrogen-initiated one is poorly understood. Recently, it was shown that in the bulk Al-Al2O3 system, the blistering is preceded by the formation of nano-sized cavities on the substrate. The stress-and hydrogen-driven mechanisms in atomic-layer-deposited (ALD) films are explored here. We clarify issues in the hydrogen-related mechanism via high-resolution microscopy and show that at…
Growth, Structure, and Stability of KxWO3 Nanorods on Mica Substrate
2012
International audience; KxWO3 nanorods, interesting as gas sensors, were elaborated on mica muscovite substrate and characterized by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and mainly transmission electron microscopy. A combination of structural analyses allowed determining the morphology of these rods, and selected area electron diffraction experiments pointed out the simultaneous presence of the exotic hexagonal and stable monoclinic phases. Moreover, the presence of potassium inside the nanorods, coming from the mica substrate, was revealed. By combining all the observations, a growth model is proposed, consisting of the stacking of two di…
Properties of atomic layer deposited nanolaminates of zirconium and cobalt oxides
2018
Producción Científica
Residual crystalline silicon phase in silicon-rich-oxide films subjected to high temperature annealing
2002
Structural properties of silicon rich oxide films (SRO) have been investigated by means of micro-Raman spectroscopy and transmission electron microscopy (TEM). The layers were deposited by plasma enhanced chemical vapor deposition using different SiH4/O2 gas mixtures. The Raman spectra of the as-deposited SRO films are dominated by a broad band in the region 400-500 cm-1 typical of a highly disordered silicon network. After annealing at temperatures above 1000°C in N2, the formation of silicon nanocrystals is observed both in the Raman spectra and in the TEM images. However, most of the precipitated silicon does not crystallize and assumes an amorphous microstructure. © 2002 The Electrochem…