Search results for "arbuscular mycorrhiza"

showing 10 items of 163 documents

Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability

2020

Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which sugges…

0106 biological sciencesLimiting factorAgroecosystemorganic nitrogenchemistry.chemical_elementBiomassarbuscular mycorrhizal fungiPlant Scienceengineering.materiallcsh:Plant culture01 natural sciencesarbuscular mycorrhizal (AM) symbiosislcsh:SB1-1110Original Researchsoil nitrogen (N) sourcefungifood and beverages04 agricultural and veterinary sciencessoil nitrogen (N) availabilityNitrogenPlant tissuemineral nitrogennitrogen uptakeSettore AGR/02 - Agronomia E Coltivazioni ErbaceechemistryProductivity (ecology)Agronomy040103 agronomy & agricultureengineering0401 agriculture forestry and fisheriesFertilizerArbuscular mycorrhizal fungi AM symbiosis Soil N Source Soil N availability Organic nitrogen Mineral nitrogen nitrogen uptake 15 N Fertilizer Recovery15N fertilizer recoveryArbuscular mycorrhizal010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in si…

2008

International audience; Gene expression profiling based on tissue extracts gives only limited information about genes associated with complex developmental processes such as those implicated in fungal interactions with plant roots during arbuscular mycorrhiza development and function. To overcome this drawback, a direct fluorescent in situ RT-PCR methodology was developed for spatial mapping of gene expression in different presymbiotic and symbiotic structures of an arbuscular mycorrhizal fungus. Transcript detection was optimized by targeting the LSU rRNA gene of Glomus intraradices and monitoring expression of a stearoyl-CoA-desaturase gene that is consistently expressed at high levels in…

0106 biological sciencesMYCORHIZES A ARBUSCULESGENE EXPRESSIONHyphaGLOMUS INTRARADICESDIRECT FLUORESCENT IN SITU RT-PCR01 natural sciencesMicrobiologyPlant RootsARBUSCULAR MYCORRHIZAL FUNGIFungal ProteinsSUPEROXIDE DISMUTASE03 medical and health sciencesFungal StructuresGene Expression Regulation FungalMycorrhizaeBotanyGene expressionGeneticsMedicagoCONFOCAL MICROSCOPYGene030304 developmental biologyDNA PrimersFluorescent DyesPeptidylprolyl isomerase0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsMicroscopy ConfocalbiologyPEPTIDYLPROPYL ISOMERASEReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingfungiSYMBIOSISGene Expression Regulation DevelopmentalPeptidylprolyl Isomerasebiology.organism_classificationMedicago truncatulaCell biologyArbuscular mycorrhizaGene expression profilingSTEAROYL-CoA-DESATURASEXanthenesMEDICAGO TRUNCATULAStearoyl-CoA Desaturase010606 plant biology & botany
researchProduct

Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in gra…

2012

International audience; The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandierixV. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of my…

0106 biological sciencesNematodaPhysiology[SDV]Life Sciences [q-bio]NepovirusPlant Science01 natural sciencesXiphinema indexPlant RootsGlomeromycota03 medical and health sciencesGene Expression Regulation PlantMycorrhizaeBotanyGallAnimalsVitisMycorrhizaGlomeromycotaGlomus030304 developmental biologyPlant DiseasesPlant Proteins2. Zero hunger0303 health sciencesbiologyarbuscular mycorrhizaGrapevine fanleaf virussplit-root systembiology.organism_classificationgrapevineNematode[SDE]Environmental Sciencesbioprotectionxiphinema indexdefence gene expressionRootstock010606 plant biology & botanyResearch Paper
researchProduct

Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants

2021

Vegetable plants are more sensitive to salt stress during the early growth stages

0106 biological sciencesNurseryMicroorganismMicroorganism<i>Lactuca sativa</i> L.SeedlingBiomassArbuscular mycorrhizal fungi<i>Solanum lycopersium</i> L.Vegetable<i>Trichoderma</i>01 natural sciences03 medical and health sciencesSalt streSolanum lycopersium L.microorganismsGlomus030304 developmental biologysalt stressTrichoderma0303 health sciencesbiologyBrackish waterInoculationSfungifood and beveragesAgriculturebiology.organism_classificationSalinityHorticultureSeedlingTrichodermaPGPRLactuca sativa L.Agronomy and Crop Science010606 plant biology & botany
researchProduct

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

2009

To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc–) mutan…

0106 biological sciencesPhysiologychampignon phytopathogèneBiologyGenes Plant01 natural sciencesPlant Root NodulationPlant RootsMicrobiology03 medical and health sciencesGene Expression Regulation PlantARBUSCULAR MYCORRHIZAL FUNGUSMycorrhizaeGene expressionMedicago truncatulaSpore germination[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMycorrhizaSymbiosisGene030304 developmental biologyPlant Proteins0303 health sciencesAppressoriumExpressed sequence taggénomegènefungifood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationMedicago truncatulaArbuscular mycorrhizaracinesymbioseAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Mycorrhizae differentially influence the transfer of nitrogen among associated plants and their competitive relationships

2021

Abstract The formation of a common mycorrhizal network among roots of different plant species growing close to each other can influence plant community dynamics, regulating plant relationships through the differential transfer of nutrients from one plant to another. However, knowledge of the mechanisms that regulate this process is poor. Here we quantify the contribution of arbuscular mycorrhizae to the transfer of N among heterospecific plants growing adjacent to each other and examine whether the differential transfer of N within the plant community via mycorrhizae can alter competitive relationships among plant species. Plants of four species (wheat, pea, flax, and chicory) were grown in…

0106 biological sciencesPlant-plant interaction15N labellingMicroorganismSoil Sciencechemistry.chemical_elementBiology01 natural sciencesNutrientSymbiosisBotanyMycorrhizal networkCommon Mycorrhizal NetworkEcologyArbuscular Mycorrhizal SymbiosiNitrogen transferPlant community04 agricultural and veterinary sciencesAgricultural and Biological Sciences (miscellaneous)NitrogenSettore AGR/02 - Agronomia E Coltivazioni Erbaceechemistry040103 agronomy & agriculturePlant species0401 agriculture forestry and fisheriesArbuscular mycorrhizal010606 plant biology & botany
researchProduct

A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions

2004

We have developed a protocol in which proteins and mRNA can be analyzed from single root samples. This experimental design was validated in arbuscular mycorrhiza by comparing the proteins profiles obtained with those from a classical protein extraction process. It is a step forward to make simultaneous proteome and transcriptiome profiling possible.

0106 biological sciencesProteomeComputational biologyFungusProteomicsPlant Roots01 natural sciencesBiochemistryFungal ProteinsTranscriptome03 medical and health sciencesGene Expression Regulation PlantMycorrhizaeBotanyProtein purificationMedicago[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyElectrophoresis Gel Two-Dimensional[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRNA MessengerSymbiosisMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyGene Expression Profilingfungibiology.organism_classificationGENOMIQUEMedicago truncatulaArbuscular mycorrhizaProteomeFunctional genomics010606 plant biology & botanyPROTEOMICS
researchProduct

Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices - RiT-DNA carrot root mycorrhizas

2004

To identify fungal proteins involved in the arbuscular mycorrhizal symbiosis, root-inducing transferred-DNA transformed roots of carrot (Daucus carota L.) were in vitro inoculated with Glomus intraradices. Proteins extracted from the extra-radical fungus were analysed by two-dimensional gel electrophoresis. A fungal reference map displaying 438 spots was set up. Four proteins, among the 14 selected for tandem mass spectrometry analysis, were identified including a NmrA-like protein, an oxido-reductase, a heat-shock protein and an ATP synthase beta mitochondrial precursor. The possible fungal origin of a MYK15-like protein found in mycorrhizal roots was further discussed. This is the first r…

0106 biological sciencesProteomeFungusProteomicsPlant Roots01 natural sciencesApplied Microbiology and BiotechnologyMicrobiologyMass SpectrometryMicrobiologyFungal Proteins03 medical and health sciencesSymbiosisMycorrhizaeElectrophoresis Gel Two-DimensionalMycorrhizaGlomeromycota[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyComputingMilieux_MISCELLANEOUSGel electrophoresis0303 health sciencesFungal proteinEcologybiology030306 microbiologyfungibiology.organism_classificationDaucus carotaArbuscular mycorrhiza[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology010606 plant biology & botanyDaucus carota
researchProduct

Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis

2014

International audience; Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P and S plant nutrition, but the mechanisms behind these exchang…

0106 biological sciencesRhizophagus irregularisS deficiencyTranscription Genetic[SDV]Life Sciences [q-bio]FungusPlant Sciencelcsh:Plant culture01 natural sciencesAM interactionrhizophagus irregularissulfur deficiencyTranscriptomeCell wall03 medical and health sciencesBotanymedicago truncatula;transcriptome;S deficiency;AM interaction;rhizophagus irregularis[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110Original Research ArticleGene030304 developmental biology2. Zero hungerAbiotic component0303 health sciencescarencebiologyarbuscular mycorrhizafungifood and beveragesmedicago truncatulabiology.organism_classificationMedicago truncatulaArbuscular Mycorrhizal Symbiosis[SDE]Environmental SciencesPlant nutritionnutrition soufréetranscriptome010606 plant biology & botany
researchProduct

Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as deciphered by subcellular proteomics

2019

Prod 2020-8c SPE IPM INRA UB CNRS; The roots of most land plants can enter a symbiotic relationship with arbuscular mycorrhizal (AM) soil‐borne fungi belonging to the phylum Glomeromycota, which improves the mineral nutrition of the host plant. The fungus enters the root through the epidermis and grows into the cortex where it differentiates into a highly branched hyphal structure called the arbuscule. The role of the plant membrane system as the agent for cellular morphogenesis and signal/nutrient exchanges is especially accentuated during AM endosymbiosis. Notably, fungal hyphae are always surrounded by the host membrane, which is referred to as the perifungal membrane around intracellula…

0106 biological sciencesRhizophagus irregularis[SDV]Life Sciences [q-bio]BiologyProteomicsplasma membrane01 natural sciences03 medical and health sciencesroot plastidsBotanyOrganelle[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRhizophagus irregularismicrosomesShotgun proteomics030304 developmental biology0303 health sciencesspectral countingSpectral countingfungifood and beveragesbiology.organism_classificationMedicago truncatulashotgun proteomicscellular fractionation methods[SDE]Environmental SciencesArbuscular mycorrhizal010606 plant biology & botany
researchProduct