Search results for "banach"

showing 10 items of 326 documents

Absolutely summing operators on C[0,1] as a tree space and the bounded approximation property

AbstractLet X be a Banach space. For describing the space P(C[0,1],X) of absolutely summing operators from C[0,1] to X in terms of the space X itself, we construct a tree space ℓ1tree(X) on X. It consists of special trees in X which we call two-trunk trees. We prove that P(C[0,1],X) is isometrically isomorphic to ℓ1tree(X). As an application, we characterize the bounded approximation property (BAP) and the weak BAP in terms of X∗-valued sequence spaces.

Banach spacesAbsolutely summing operatorsTwo-trunk treesContinuous functions on [01]Linear B-splinesBounded approximation propertiesJournal of Functional Analysis
researchProduct

Bergman and Bloch spaces of vector-valued functions

2003

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(, X) onto the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X*) for any complex Banach space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space ℬ(X*). Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that Bp(X) is always complemented in p(X). (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Bloch spacePure mathematicsBergman spaceGeneral MathematicsBounded functionMathematical analysisBanach spaceInterpolation spaceSpace (mathematics)Bergman kernelReproducing kernel Hilbert spaceMathematicsMathematische Nachrichten
researchProduct

The validity of the “liminf” formula and a characterization of Asplund spaces

2014

Abstract We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Frechet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconve…

Bump functionCombinatoricsClosed setApplied MathematicsPseudoconvexityMathematical analysisTangent coneBanach spaceSubderivativeLipschitz continuityAnalysisMathematicsAsplund spaceJournal of Mathematical Analysis and Applications
researchProduct

INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS

2010

We study the existence of integral solutions to a class of nonlinear evolution equations of the form [Formula: see text] where A : D(A) ⊆ X → 2X is an m-accretive operator on a Banach space X, and f : [0, T] × X → X and [Formula: see text] are given functions. We obtain sufficient conditions for this problem to have a unique integral solution.

Cauchy problemClass (set theory)Pure mathematicsApplied MathematicsGeneral MathematicsOperator (physics)Mathematical analysisBanach spaceIntegral solutionFixed pointNonlinear evolutionFourier integral operatorMathematicsCommunications in Contemporary Mathematics
researchProduct

Existence results and asymptotic behavior for nonlocal abstract Cauchy problems

2008

AbstractThe purpose of this paper is to study the existence and asymptotic behavior of solutions for Cauchy problems with nonlocal initial datum generated by accretive operators in Banach spaces.

Cauchy problemPure mathematicsm-Accretive operatorsNonlocal Cauchy problemsApplied MathematicsMathematical analysisBanach spaceMathematics::Analysis of PDEsGeodetic datumCauchy distributionIntegral solutionsAsymptotic behaviorAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

The Bohr Radius of a Banach Space

2009

Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).

Combinatorics010102 general mathematicsMathematical analysisBanach space010103 numerical & computational mathematics0101 mathematicsAlgebra over a fieldLp space01 natural sciencesBohr radiusMathematics
researchProduct

On norm attaining polynomials

2003

We show that for every Banach space X the set of 2-homogeneous continuous polynomials whose canonical extension to X∗∗ attain their norm is a dense subset of the space of all 2-homogeneous continuous polynomials P(2X).

CombinatoricsDense setGeneral MathematicsNorm (mathematics)Banach spaceOperator normMathematicsPublications of the Research Institute for Mathematical Sciences
researchProduct

Sigma-fragmentability and the property SLD in C(K) spaces

2009

Abstract We characterize two topological properties in Banach spaces of type C ( K ) , namely, being σ-fragmented by the norm metric and having a countable cover by sets of small local norm-diameter (briefly, the property norm-SLD). We apply our results to deduce that C p ( K ) is σ-fragmented by the norm metric when K belongs to a certain class of Rosenthal compacta as well as to characterize the property norm-SLD in C p ( K ) in case K is scattered.

CombinatoricsDiscrete mathematicsClass (set theory)Property (philosophy)Cover (topology)Metric (mathematics)Banach spaceSigmaCountable setGeometry and TopologyMathematicsTopology and its Applications
researchProduct

Remarks on the semivariation of vector measures with respect to Banach spaces.

2007

Suppose that and . It is shown that any Lp(µ)-valued measure has finite L2(v)-semivariation with respect to the tensor norm for 1 ≤ p &lt; ∞ and finite Lq(v)-semivariation with respect to the tensor norm whenever either q = 2 and 1 ≤ p ≤ 2 or q &gt; max{p, 2}. However there exist measures with infinite Lq-semivariation with respect to the tensor norm for any 1 ≤ q &lt; 2. It is also shown that the measure m (A) = χA has infinite Lq-semivariation with respect to the tensor norm if q &lt; p.

CombinatoricsDiscrete mathematicsGeneral MathematicsNorm (mathematics)Locally convex topological vector spaceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBanach spaceInterpolation spaceUniformly convex spaceBanach manifoldLp spaceNormed vector spaceMathematicsBulletin of the Australian Mathematical Society
researchProduct

Hölder inequality for functions that are integrable with respect to bilinear maps

2008

Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p&lt;\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu&lt;\infty$. We get an analogue to Hölder's inequality in this setting.

CombinatoricsHölder's inequalityGeneral MathematicsBounded functionMathematical analysisBanach spaceFunction (mathematics)Bilinear mapSpace (mathematics)OmegaMeasure (mathematics)MathematicsMATHEMATICA SCANDINAVICA
researchProduct