Search results for "bandgap"

showing 10 items of 58 documents

The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires

2015

We experimentally investigate the influence of AlN buffer growth on the nucleation and the polarity of a self-organized assembly of GaN nanowires (NWs) grown on Si. Two complementary growth mechanisms for AlN buffer deposited on Si are demonstrated. Both emphasize the aggregation of Si on the AlN surface and the growth of large cubic crystallites, namely, AlN pedestals. Further growths of GaN NWs assembly reveal that the GaN 2D layer found at the bottom of the NW assembly is the result of the coalescence of Ga-polar pyramids, whereas AlN pedestals are observed as preferential but not exclusive NW nucleation sites. NWs are N-polar or exhibit inversion domains with a Ga-polar core/N-polar she…

010302 applied physicsCoalescence (physics)[PHYS]Physics [physics]Materials sciencebusiness.industryNucleationWide-bandgap semiconductorNanowireGeneral Physics and AstronomyNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBuffer (optical fiber)Nanolithography0103 physical sciencesOptoelectronicsCrystalliteSelf-assembly0210 nano-technologybusinessComputingMilieux_MISCELLANEOUS
researchProduct

Phase segregation in Mg$_{x}$Zn$_{1-x}$O probed by optical absorption and photoluminescence at high pressure

2017

The appearance of segregated wurtzite Mg$_x$Zn$_{1-x}$O with low Mg content in thin films with $x>0.3$ affected by phase separation, cannot be reliably probed with crystallographic techniques owing to its embedded nanocrystalline configuration. Here we show a high-pressure approach which exploits the distinctive behaviors under pressure of wurtzite Mg$_x$Zn$_{1-x}$O thin films with different Mg contents to unveil phase segregation for $x>0.3$. By using ambient conditions photoluminescence (PL), and with optical absorption and PL under high pressure for $x=0.3$ we show that the appearance of a segregated wurtzite phase with a magnesium content of x $\sim$ 0.1 is inherent to the wurtzit…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhotoluminescenceBand gapAnalytical chemistryWide-bandgap semiconductorGeneral Physics and AstronomyMineralogyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialPhase (matter)0103 physical sciencesAbsorption (chemistry)Thin film0210 nano-technologyWurtzite crystal structure
researchProduct

Photo-electrical and transport properties of hydrothermal ZnO

2016

We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to VZn, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm2/s) at low excitations and temperatures up to 800 K was attributed to impact the rec…

010302 applied physicsElectron mobilityPhotoluminescenceChemistryBand gapExcitonWide-bandgap semiconductorGeneral Physics and Astronomy02 engineering and technologyCarrier lifetime021001 nanoscience & nanotechnology01 natural sciencesAcceptorMolecular physicsCrystalCondensed Matter::Materials Science0103 physical sciencesAtomic physics0210 nano-technologyJournal of Applied Physics
researchProduct

High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition

2020

The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).

010302 applied physicsFabricationMaterials sciencebusiness.industrydiodesSi doped02 engineering and technologyfabrication021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPulsed laser depositiongallium oxideGallium oxideQuality (physics)wide bandgap0103 physical sciencesSapphire:NATURAL SCIENCES:Physics [Research Subject Categories]Optoelectronics0210 nano-technologybusinesspulsed laser depositionDiodephysica status solidi (b)
researchProduct

Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: effect of thermal annealing

2013

International audience; ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.

010302 applied physicsTelecomunicacionesPhotoluminescenceMaterials sciencePhysics and Astronomy (miscellaneous)Annealing (metallurgy)business.industryWide-bandgap semiconductorNanowire02 engineering and technology021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesHomogeneous distributionRadiative efficiency0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusinessWurtzite crystal structure
researchProduct

Low-Power, Subthreshold Reference Circuits for the Space Environment : Evaluated with -rays, X-rays, Protons and Heavy Ions

2019

The radiation tolerance of subthreshold reference circuits for space microelectronics is presented. The assessment is supported by measured results of total ionization dose and single event transient radiation-induced effects under &gamma

02 engineering and technologyHardware_PERFORMANCEANDRELIABILITYgammasäteily7. Clean energy01 natural sciencesanalog single-event transient (ASET)Ionizationsingle-event effects (SEE)0202 electrical engineering electronic engineering information engineeringAnnan elektroteknik och elektronikElectronic circuitPhysicsprotonsSubthreshold conductionionisoiva säteilyröntgensäteilyGamma raygamma-raysHardware and ArchitectureAtomic physicsVoltage referencemikroelektroniikkaprotonitComputer Networks and Communicationslcsh:TK7800-8360voltage referenceIonheavy-ions0103 physical sciencesionizationradiation hardening by design (RHBD)X-raysHardware_INTEGRATEDCIRCUITSMicroelectronicsElectrical and Electronic Engineeringhiukkassäteilybandgap voltage reference (BGR)Other Electrical Engineering Electronic Engineering Information Engineering010308 nuclear & particles physicsbusiness.industry020208 electrical & electronic engineeringlcsh:Electronicsspace electronicstotal ionization dose (TID)Analog single-event transient (ASET); Bandgap voltage reference (BGR); CMOS analog integrated circuits; Gamma-rays; Heavy-ions; Ionization; Protons; Radiation hardening by design (RHBD); Reference circuits; Single-event effects (SEE); Space electronics; Total ionization dose (TID); Voltage reference; X-raysmikropiiritsäteilyfysiikkaControl and Systems Engineeringreference circuitsSignal ProcessingbusinessSpace environmentHardware_LOGICDESIGNCMOS analog integrated circuits
researchProduct

Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light

2018

© 2018 Springer Science+Business Media, LLC, part of Springer Nature Abstract: Enabling solar and/or visible light-driven photocatalysis is a crucial step to access innovative applications in environmental science and sustainable energy. Titanium dioxide is the most used photocatalyst because of its low cost and toxicity, however it is also limitedly active under visible light irradiation due to its wide band gap. Among its polymorphs, brookite holds promising optoelectronic properties for visible light photocatalysis, which have to the best of our knowledge been limitedly exploited. Here, a C,S,N-doped brookite-based TiO2has been prepared via a rapid one-pot sol–gel synthesis. Besides subs…

Band gap02 engineering and technology010402 general chemistry01 natural sciencesCatalysisHeterogeneous catalysichemistry.chemical_compoundVisible-light photocatalysiSpecific surface areaBrookiteDopingHeterogeneous catalysisbusiness.industryBrookiteDopingWide-bandgap semiconductorGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesVisible-light photocatalysischemistryvisual_artTitanium dioxidePhotocatalysisvisual_art.visual_art_mediumOptoelectronicsTitanium dioxide0210 nano-technologybusinessVisible spectrum
researchProduct

Systematical, experimental investigations on LiMgZ (Z= P, As, Sb) wide band gap semiconductors

2011

This work reports on the experimental investigation of the wide band gap compounds LiMgZ (Z = P, As, Sb), which are promising candidates for opto-electronics and anode materials for Lithium batteries. The compounds crystallize in the cubic (C1_b) MgAgAs structure (space group F-43m). The polycrystalline samples were synthesized by solid state reaction methods. X-ray and neutron diffraction measurements show a homogeneous, single-phased samples. The electronic properties were studied using the direct current (DC) method. Additionally UV-VIS diffuse reflectance spectra were recorded in order to investigate the band gap nature. The measurements show that all compounds exhibit semiconducting be…

Condensed Matter - Materials ScienceMaterials scienceAcoustics and UltrasonicsBand gapNeutron diffractionDirect currentWide-bandgap semiconductorAnalytical chemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical scienceschemistry.chemical_elementCondensed Matter PhysicsSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonchemistryLithiumCrystallite
researchProduct

Ab Initio Thermodynamics of Oxygen Vacancies and Zinc Interstitials in ZnO.

2015

ZnO is an important wide band gap semiconductor with potential application in various optoelectronic devices. In the current contribution, we explore the thermodynamics of oxygen vacancies and zinc interstitials in ZnO from first-principles phonon calculations. Formation enthalpies are evaluated using hybrid DFT calculations, and phonons are addressed using the PBE and the PBE+U functionals. The phonon contribution to the entropy is most dominant for oxygen vacancies, and their Gibbs formation energy increases when including phonons. Finally, inclusion of phonons decreases the Gibbs formation energy difference of the two defects and is therefore important when predicting their equilibrium c…

Condensed Matter::OtherPhononAb initioWide-bandgap semiconductorchemistry.chemical_elementThermodynamicsZincOxygenOxygen vacancyCondensed Matter::Materials ScienceEntropy (classical thermodynamics)chemistryCondensed Matter::SuperconductivityPhysics::Atomic and Molecular ClustersGeneral Materials SciencePhysical and Theoretical ChemistryThe journal of physical chemistry letters
researchProduct

Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures

2001

Ga-face AlGaN/GaN heterostructures with different sheet carrier concentrations have been studied by photoluminescence and Raman spectroscopy. Compared to bulk GaN, an energy shift of the excitonic emission lines towards higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. This strain was confirmed by the shift of the E2 Raman line, from which biaxial compressive stresses ranging between 0.34 and 1.7 GPa were deduced. The spontaneous and piezoelectric polarizations for each layer of the heterostructures have been also calculated. The analysis of these quantities clarified the influence of the residual stress on the sheet electron concentratio…

Electron densityTwo-dimensional electron gasMaterials sciencePhotoluminescenceIII-V semiconductorsAluminium compounds ; Gallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Semiconductor heterojunctions ; Two-dimensional electron gas ; Electron density ; Internal stresses ; Photoluminescence ; Raman spectra ; Excitons ; Interface states ; Piezoelectric semiconductors ; Dielectric polarisationExcitonAnalytical chemistryGeneral Physics and AstronomyDielectric polarisationMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeResidual stress:FÍSICA [UNESCO]Emission spectrumPiezoelectric semiconductorsPhotoluminescenceAluminium compoundsUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsHeterojunctionInterface statesWide band gap semiconductorssymbolsExcitonsRaman spectraSemiconductor heterojunctionsRaman spectroscopyInternal stressesElectron density
researchProduct