Search results for "bimetallic"

showing 10 items of 187 documents

Photochemical Synthesis and Reactivity of New Chloro-Bridged Complexes with Tungstenocene (η5-C5H5)(η5-C5H4PPh2)WClX (X = H, Cl) and Tetracarbonylmet…

1999

Chloro-bridged bimetallic complexes (η5-C5H5)[η5-C5H4PPh2M′(CO)4]W(μ-Cl)X [X = Cl (3), × = H (4); M′ = Cr, W] were prepared by photochemical irradiation of (η5-C5H5)[η5-C5H4PPh2M′(CO)5]WClX [X = Cl (1), × = H (2); M′ = Cr, W]. The reactivity of the chloro-bridged complexes towards Lewis bases was studied; by exposure to CO or phosphanes, a facile cleavage of the chloro bridge accompanied by regio- and stereospecific coordination at M′ occurs. The X-ray structure of complex 3 (M′ = W) is reported.

Inorganic ChemistryStereospecificityChemistryReactivity (chemistry)Lewis acids and basesCleavage (embryo)PhotochemistryBimetallic stripEuropean Journal of Inorganic Chemistry
researchProduct

Monitoring the carburization of molybdenum bimetallic nitrides and oxynitrides with CH4/H2/Ar mixtures: identification of a new carbonitride.

2008

A new carbonitride Ni2Mo3(CxNy) has been synthesized by temperature-programmed carburization of the Ni2Mo3N precursor with a CH4/H2/Ar gas mixture at 923 K. This compound has been characterized by X-ray diffraction, elemental analysis, Auger electron spectroscopy, laser Raman spectroscopy, thermogravimetric analysis and field-emission scanning electron microscopy. Ni2Mo3(CxNy) crystallizes in the cubic space group P4(1)32, with a lattice parameter of a=6.64575(3) A, corresponding to the unusual filled beta-Mn structure. Its formation occurs by partial substitution of N by C via a topotactic and pseudomorphic reaction and its stability in air is higher that of Ni2Mo3N. A two-phase mixture wi…

Inorganic ChemistryThermogravimetric analysisAuger electron spectroscopyMaterials scienceLattice constantchemistryScanning electron microscopeMolybdenumElemental analysisPhysical chemistrychemistry.chemical_elementNitrideBimetallic stripDalton transactions (Cambridge, England : 2003)
researchProduct

Magnetic properties of hybrid molecular materials based on oxalato complexes

2003

Abstract The use of [MIII(ox)3]3− (MIII=Ru, Rh) complexes as building blocks for hybrid molecular materials is highlighted with two different synthetic approaches. The first strategy is the combination of organic donors and [RuIII(ox)3]3− units, resulting in the radical salt of formula TTF3[Ru(ox)3]·0.5EtOH·4H2O (1) which shows coexistence of paramagnetism and semiconducting properties. The second approach is the synthesis of extended 2D bimetallic oxalato-bridged networks of general formula [FeCp2 *][MIIRh(ox)3] in which paramagnetic layers of decamethylferricinium cations are alternated with paramagnetic bimetallic layers.

Inorganic Chemistrychemistry.chemical_classificationParamagnetismchemistry.chemical_compoundChemistryPolymer chemistryInorganic chemistryMaterials ChemistrySalt (chemistry)Physical and Theoretical ChemistryMolecular materialsBimetallic stripTetrathiafulvalene
researchProduct

Design of ordered bimetallic complexes, Part 2:Trans-1,2-cyclohexanediaminetetraacetate bimetallates

1987

Knowledge of the kinetic and thermodynamic behaviour of aqueous solutions containing two divalent cations andtrans-1,2-cyclohexanediaminetetraacetate has been used to design synthetic pathways to ordered bimetallic complexes

Inorganic Chemistrychemistry.chemical_classificationchemistry.chemical_compoundAqueous solutionchemistryComputational chemistryInorganic chemistryMaterials ChemistryMetals and AlloysBimetallic stripOrganometallic chemistryDivalentCatalysisTransition Metal Chemistry
researchProduct

A “Cation-less” Oxalate-Based Ferromagnet Formed by Neutral Bimetallic Layers:  {[Co(H2O)2]3[Cr(ox)3]2(18-crown-6)2}∞ (ox = Oxalate Dianion; 18-crown…

2007

Neutral layers of the bimetallic oxalate complex {[Co(H2O)2]3[Cr(ox)3]2}∞ are formed in the presence of a crown ether and stabilized by hydrogen bonding. The resulting soluble ferromagnet orders at Tc = 7.4 K.

Inorganic Chemistrychemistry.chemical_classificationchemistry.chemical_compoundCrystallographychemistryFerromagnetismHydrogen bond18-Crown-6Physical and Theoretical ChemistryBimetallic stripCrown etherOxalateInorganic Chemistry
researchProduct

Oxalate-Based Soluble 2D Magnets: The Series [K(18-crown-6)]3[MII3(H2O)4{MIII(ox)3}3] (MIII = Cr, Fe; MII = Mn, Fe, Ni, Co, Cu; ox = C2O42−; 18-crown…

2008

The synthesis and magnetic properties of the oxalate-based molecular soluble magnets with general formula [K(18-crown-6)] 3[M (II) 3(H 2O) 4{M (III)(ox) 3} 3] (M (III) = Cr, Fe; M (II) = Mn, Fe, Ni, Co, Cu; ox = C 2O 4 (2-)) are here described. All the reported compounds are isostructural and built up by 2D bimetallic networks formed by alternating M (III) and M (II) ions connected through oxalate anions. Whereas the Cr (III)M (II) derivatives behave as ferromagnets with critical temperatures up to 8 K, the Fe (III)M (II) present ferri- or weak ferromagnetic ordering up to 26 K.

Inorganic Chemistrychemistry.chemical_compoundCrystallographyFerromagnetismChemistryMagnet18-Crown-6MetallurgyPhysical and Theoretical ChemistryIsostructuralBimetallic stripOxalateIonInorganic Chemistry
researchProduct

2D and 3D bimetallic oxalate-based ferromagnets prepared by insertion of different FeIII spin crossover complexes

2010

The syntheses, structures and magnetic properties of the compounds of formula [Fe(III)(5-NO(2)sal(2)-trien)][Mn(II)Cr(III)(ox)(3)]·CH(3)NO(2).0.5H(2)O (1) and [Fe(III)(5-CH(3)Osal(2)-trien)][Mn(II)Cr(III)(ox)(3)] (2) are reported. The structure of 1, that crystallizes in the P2(1) chiral space group, presents a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a cationic layer of [Fe(III)(5-NO(2)sal(2)-trien)](+) complexes intercalated between the 2D oxalate network. The structure of 2, that crystallizes in the Pna2(1) acentric space group, presents a 3D achiral anionic network formed by Mn(II) and Cr(III) ions linked through oxalate ligands wit…

Inorganic Chemistrychemistry.chemical_compoundCrystallographyFerromagnetismChemistrySpin crossoverInorganic chemistryAcentric factorCationic polymerizationBimetallic stripOxalateIonDalton Transactions
researchProduct

Heptacoordinated MnIIin oxalate-based bimetallic 2D magnets: synthesis and characterisation of [Mn(L)6][Mn(CH3OH)MIII(ox)3]2(MIII= Cr, Rh; ox = oxala…

2006

Oxalate-based magnets have been known with several different crystallographic structures, from 1D to 3D, but with all of them based in metal ions with octahedral coordination. In this article we report a new bidimensional oxalate-bridged bimetallic magnet where the divalent metal appears heptacoordinated, which has strong effects in the structure and properties of this materials.

Inorganic Chemistrychemistry.chemical_compoundCrystallographyMaterials scienceOctahedronchemistryMagnetMetal ions in aqueous solutionNanotechnologyBimetallic stripOxalateDivalent metalDalton Trans.
researchProduct

Reactivity of bimetallic dibridged complexes Cp2Ta(H)(μ-H)(μ-PMe2)M′(CO)4 (M′ = Cr, Mo, W) toward two-electron donor ligands L (L = PR3, Me2P(CH2)nPM…

1998

Abstract The reaction of the heterobimetallic phosphido- and hydrido-bridged complexes Cp 2 TaH(μ-H)(μ-PMe 2 )M′(CO) 4 (M′ = Cr, Mo, W) ( 1–3 ) with phosphines (L = PPh 2 Me, PMe 2 Ph) or diphosphines (L = dmpm, dmpe) leads to Cp 2 Ta(H) 2 (μ-PMe 2 )M′(CO) 4 (L) ( 1a, 1b, c, d-3b, c, d ) with L regiospecifically coordinated to M′. Except for L = PPh 2 Me, the reaction is stereospecific, since a cis arrangement (with respect to the PMe 2 bridge) on the M′ site is obtained. The new compounds Cp 2 Ta(H) 2 (μ-PMe 2 )M′ (CO) 4 (Me 2 P(CH 2 ) 2 PMe 2 ) (M′ = Mo, W) are able to bind [Cr(CO) 5 ] fragments affording the linear trinuclear chain compounds Cp 2 Ta(H) 2 (μ-PMe 2 )M′(CO) 4 (Me 2 P(CH 5 )…

Inorganic Chemistrychemistry.chemical_compoundCrystallographyStereospecificityChemistryDiphosphinesMaterials ChemistryInfrared spectroscopyReactivity (chemistry)Electron donorPhysical and Theoretical ChemistryBimetallic stripPolyhedron
researchProduct

[TiPHOS(Rh)]+:  A Fortuitous Coordination Mode and an Effective Hydrosilylation Bimetallic Catalyst

2005

The reaction of the titanocene diphosphine {(η5-C5H5)[η5-C5Me3-1,2-(PPh2)2]TiCl2} (TiPHOS; 1) with [Rh(COD)2](OTf) led to the new early−late heterobimetallic complex [(TiPHOS)Rh(COD)](OTf) (2), who...

Inorganic Chemistrychemistry.chemical_compoundchemistryHydrosilylationOrganic ChemistryPolymer chemistryOrganic chemistryPhysical and Theoretical ChemistryBimetallic stripCatalysisOrganometallics
researchProduct