Search results for "cell wall"
showing 10 items of 226 documents
5 The Ascomycetous Cell Wall: From a Proteomic Perspective
2016
Cell walls are essential organelles for fungi; they define cell shape during growth and provide osmotic integrity and protection against harmful influences in the growth environment. Fungal walls also play an important role in developing fungal infections as they form the first contact between the pathogen and the host immune system. In many ascomycetes, the cell wall consists of a polysaccharide matrix surrounded by a layer of covalently bound glycoproteins. With the complete genome sequences being available for many species, cell wall research in recent years has largely focused on identifying and elucidating the functions of cell wall proteins. In this chapter, we discuss, with a main fo…
TheGCA1gene encodes a glycosidase-like protein in the cell wall ofCandida albicans
2016
Candida albicans Gca1p is a putative glucoamylase enzyme which contains 946 amino acids, 11 putative sites for N -glycosylation and 9 for O -glycosylation. Gca1p was identified in β-mercaptoethanol extracts from isolated cell walls of strain C. albicans SC5314 and it is involved in carbohydrate metabolism. The significance and the role of this protein within the cell wall structure were studied in the corresponding mutants. The homozygous mutant showed that GCA1 was not an essential gene for cell viability. Subsequent phenotypic analysis performed in the mutants obtained did not show significant difference in the behavior of mutant when compared with the wild strain SC5314. Zymoliase, Calco…
The extracellular wall-bound β-N-acetylglucosaminidase from Lactobacillus casei is involved in the metabolism of the human milk oligosaccharide lacto…
2015
Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a β-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, dem…
Mycobacterium avium subsp. paratuberculosis (Map) Fatty Acids Profile Is Strain-Dependent and Changes Upon Host Macrophages Infection
2017
Johne´s disease is a chronic granulomatous enteritis of ruminants caused by the intracellular bacterium Mycobacterium avium subsp. paratuberculosis (Map). We previously demonstrated that Map isolates from sheep persisted within host macrophages in lower CFUs than cattle isolates after 7 days of infection. In the current study, we hypothesize that these phenotypic differences between Map isolates may be driven be the fatty acids (FAs) present on the phosphadidyl-1-myo-inositol mannosides of the Map cell wall that mediate recognition by the mannose receptors of host macrophages. FAs modifications may influence Map´s envelope fluidity ultimately affecting pathogenicity. To test this hypothesis…
High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and…
2016
Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thic…
Anhydrobiosis in yeast: cell wall mannoproteins are important for yeastSaccharomyces cerevisiaeresistance to dehydration
2016
The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significa…
Toxicity reduction of ochratoxin A by lactic acid bacteria.
2017
Abstract Ochratoxin A (OTA) is a mycotoxin produced by the metabolism of fungus belonging to the genus Aspergillus and Penicillium. In this paper we report, the capacity of different cultures of lactic acid bacteria (LAB) to degrade OTA present in MRS broth at both pH 3.5 and 6.5. A study of OTA reduction during gastrointestinal digestion carried out with the LAB was also performed. Taking into account the two reduction mechanisms of OTA studied in this work as the enzymatic one and the adsorption on the cell wall, as well as at pH 3.5 and 6.5 the reduction values of OTA were in a range of 30–99%, being the strains with greater reduction (97% and 95%) Lb. rhamnosus CECT 278T and Lb. plantar…
Null mutants of Candida albicans for cell-wall-related genes form fragile biofilms that display an almost identical extracellular matrix proteome.
2016
By two-dimensional gel electrophoresis (2-DE) and mass spectrometry, we have characterized the polypeptide species present in extracts obtained by 60% ethanol treatment of whole mature (48 h) biofilms formed by a reference strain (CAI4- URA3 ) and four Candida albicans null mutants for cell-wall-related genes ( ALG5, CSA1, MNN9 and PGA10) . Null mutants form fragile biofilms that appeared partially split and weakly attached to the substratum contrary to those produced by the reference strain. An almost identical, electrophoretic profile consisting of about 276 spots was visualized in all extracts examined. Proteomic analysis led to the identification of 131 polypeptides, corresponding to 86…
Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut.
2018
International audience; Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 geneti…
A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii
2017
Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that…