Search results for "conductive atomic force microscopy"

showing 10 items of 33 documents

Single-molecule switching with non-contact atomic force microscopy

2011

We report upon controlled switching of a single 3,4,9,10-perylene tetracarboxylic diimide derivative molecule on a rutile TiO(2)(110) surface using a non-contact atomic force microscope at room temperature. After submonolayer deposition, the molecules adsorb tilted on the bridging oxygen row. Individual molecules can be manipulated by the atomic force microscope tip in a well-controlled manner. The molecules are switched from one side of the row to the other using a simple approach, taking benefit of the sample tilt and the topography of the titania substrate. From density functional theory investigations we obtain the adsorption energies of different positions of the molecule. These adsorp…

Kelvin probe force microscopeMaterials scienceMechanical EngineeringElectrostatic force microscopeBioengineeringGeneral ChemistryConductive atomic force microscopyLocal oxidation nanolithography530Molecular physicsCrystallographyMechanics of MaterialsMoleculeGeneral Materials ScienceElectrical and Electronic EngineeringMagnetic force microscopeNon-contact atomic force microscopyPhotoconductive atomic force microscopyNanotechnology
researchProduct

Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition

2016

We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated …

Kelvin probe force microscopeMaterials sciencebusiness.industryInterface (computing)Nanotechnology02 engineering and technologyConductive atomic force microscopy010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciencesSample (graphics)0104 chemical sciencesOpticsData acquisitionChemical force microscopyMicroscopy0210 nano-technologybusinessInstrumentationFrequency modulationReview of Scientific Instruments
researchProduct

Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy

2015

In this work, we demonstrate the capabilities of atomic force microscopies (AFMs) for the nondestructive determination of the polarity of GaN nanowires (NWs). Three complementary AFMs are analyzed here: Kelvin probe force microscopy (KPFM), light-assisted KPFM, and piezo-force microscopy (PFM). These techniques allow us to assess the polarity of individual NWs over an area of tens of μm(2) and provide statistics on the polarity of the ensemble with an accuracy hardly reachable by other methods. The precise quantitative analysis of the tip-sample interaction by multidimensional spectroscopic measurements, combined with advanced data analysis, has allowed the separate characterization of elec…

Kelvin probe force microscopePolarity (physics)ChemistryMechanical EngineeringSurface photovoltageNanowireBioengineeringNanotechnologyGeneral ChemistryCondensed Matter Physics[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Characterization (materials science)Condensed Matter::Materials Sciencesymbols.namesakeMicroscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Materials Sciencevan der Waals forcePhotoconductive atomic force microscopyComputingMilieux_MISCELLANEOUS
researchProduct

Spin-polarized scanning tunneling microscopy and spectroscopy of ultrathinFe∕Mo(110)films usingW∕Au∕Cotips

2006

We report on magnetic contrast observed in low-temperature spin-polarized scanning tunneling microscopy (SP-STM) of Fe nanowires deposited on Mo(110) using tungsten tips covered by $\mathrm{Au}∕\mathrm{Co}$ thin films. Due to the spin reorientation transition of Co films on Au an out-of-plane magnetic sensitivity is obtained for tips with thin cobalt films (up to 8 monolayers of Co), while for thicker Co coverages an in-plane magnetization component can be probed. Using $\mathrm{W}∕\mathrm{Au}∕\mathrm{Co}$ tips with out-of-plane magnetic sensitivity we show that the one (ML) and two (DL) atomic layers thick Fe nanowires prepared using step flow growth on a Mo(110) crystal are perpendicularl…

Materials scienceAnalytical chemistrySpin polarized scanning tunneling microscopyConductive atomic force microscopyCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionOrientation (vector space)CrystalCondensed Matter::Materials ScienceMagnetizationMagnetic anisotropylawScanning tunneling microscopeThin filmPhysical Review B
researchProduct

Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres

2009

A facile and reproducible one-step pathway has been developed for preparing ordered arrays of mesoporous carbon nanostructures within the pores of anodized aluminium oxide (AAO) membranes, through the confined self-assembly of phenol/formaldehyde resol and amphiphilic copolymer templates. The morphology of the mesoporous carbon nanostructures can be controlled by varying the copolymer surfactant, the quantity of the resol–surfactant precursor sol used and the amount of phenol–formaldehyde resol introduced into the resol–surfactant sol. One-dimensional (1-D) carbon nanostructures, such as carbon fibres with a core–shell structure and carbon ribbons with circular mesopores running parallel to…

Materials scienceAnodic oxidationPolymersCarbon nanofiberNanotechnologyGeneral ChemistryConductive atomic force microscopySurface active agentsPhenolic resinsNanostructuresTemplate reactionMembraneCarbon nanofibersPhenolsCopolymerizationSolsNanofiberCarbon fibersMaterials ChemistryCopolymerCarbide-derived carbonMesoporous materialJournal of Materials Chemistry
researchProduct

Conductive films of ordered nanowire arrays

2004

peer-reviewed High-density, ordered arrays of germanium nanowires have been synthesised within the pores of mesoporous thin films (MTFs) and anodized aluminium oxide (AAO) matrices using a supercritical fluid solution-phase inclusion technique. Conductive atomic force microscopy (C-AFM) was utilised to study the electrical properties of the nanowires within these arrays. Nearly all of the semiconductor nanowires contained within the AAO substrates were found to be conducting. Additionally, each individual nanowire within the substrate possessed similar electrical properties demonstrating that the nanowires are continuous and reproducible within each pore. C-AFM was also able to probe the co…

Materials scienceAnodizingbusiness.industryNanowirechemistry.chemical_elementNanotechnologyGermaniumGeneral ChemistryConductive atomic force microscopySubstrate (electronics)MTFsgermaniumSemiconductorchemistrynanowiresMaterials ChemistryThin filmMesoporous materialbusiness
researchProduct

Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition

2020

The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{\deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sec…

Materials scienceEELSFOS: Physical sciencesBioengineering02 engineering and technologyChemical vapor depositionSubstrate (electronics)010402 general chemistry01 natural scienceslaw.inventionsymbols.namesakelawScanning transmission electron microscopyGeneral Materials ScienceElectrical and Electronic Engineering[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Electron energy loss spectroscopy[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]Condensed Matter - Materials Scienceconductive Atomic Force MicroscopyGrapheneMechanical EngineeringElectron energy loss spectroscopyMaterials Science (cond-mat.mtrl-sci)General ChemistryConductive atomic force microscopy[CHIM.MATE]Chemical Sciences/Material chemistryChemical Vapour Deposition021001 nanoscience & nanotechnologyNanocrystalline material0104 chemical sciences3. Good healthChemical engineeringMechanics of MaterialsAlGaNsymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Transmission Electron MicroscopyGraphene0210 nano-technologyRaman spectroscopy
researchProduct

Application of electrochemical impedance for characterising arrays of Bi2S3 nanowires

2015

Abstract Electrochemical Impedance Spectroscopy (EIS) was used to characterise the electrical properties of bismuth sulphide (Bi2S3) nanowires (NWs) templated within anodic aluminium oxide (AAO) membranes. A specially engineered cell, with a nominal electrolyte volume of 0.1–0.2 ml, was used to hold and measure the electrochemical impedance of the fragile NW/AAO samples. An equivalent circuit model was developed to determine the filling density of nanowires within the porous templates. The EIS method can be utilised to probe the nanowire filling density in porous membranes over large sample areas, which is often unobtainable using electron microscopy and conductive atomic force microscopy t…

Materials scienceGeneral Chemical EngineeringNanowirechemistry.chemical_elementNanotechnologyGrowthElectrical characterizationBismuthchemistry.chemical_compoundElectrochemical Impedance SpectroscopyFabricationElectrodepositionElectrochemistryPorosityElectrical impedanceBismuth sulphideMetalTemplateConductive atomic force microscopyOxide nanowireDielectric spectroscopyNanostructuresNanowireMembranechemistryAluminium oxideAnodic aluminium oxide
researchProduct

Atomic-resolution imaging of clean and hydrogen-terminated C(100)-(2×1)diamond surfaces using noncontact AFM

2010

Received 22 April 2010; published 14 May 2010High-purity, type IIa diamond is investigated by noncontact atomic force microscopy NC-AFM .Wepresent atomic-resolution images of both the electrically conducting hydrogen-terminated C 100 - 2 1 :Hsurface and the insulating C 100 - 2 1 surface. For the hydrogen-terminated surface, a nearly square unitcell is imaged. In contrast to previous scanning tunneling microscopy experiments, NC-AFM imaging allowsboth hydrogen atoms within the unit cell to be resolved individually, indicating a symmetric dimer alignment.Upon removing the surface hydrogen, the diamond sample becomes insulating. We present atomic-resolutionimages, revealing individual C-C dim…

Materials scienceHydrogenAtomic force microscopyDimerchemistry.chemical_elementDiamondNanotechnologyConductive atomic force microscopyengineering.materialCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistryAtomic resolutionlawengineeringScanning tunneling microscopePhysical Review B
researchProduct

Electronic structure of MgO-supported Au clusters: quantum dots probed by scanning tunneling microscopy.

2007

We investigate via density functional theory (DFT) the appearance of small MgO-supported gold clusters with 8 to 20 atoms in a scanning tunneling microscope (STM) experiment. Comparison of simulations of ultrathin films on a metal support with a bulk MgO leads to similar results for the cluster properties relevant for STM. Simulated STM pictures show the delocalized states of the cluster rather than the atomic structure. This finding is due to the presence of s- derived delocalized states of the cluster near the Fermi energy. The properties of theses states can be understood from a jellium model for monovalent gold.

Materials scienceJelliumScanning tunneling spectroscopyGeneral Physics and AstronomySpin polarized scanning tunneling microscopyConductive atomic force microscopyMolecular physicsElectrochemical scanning tunneling microscopelaw.inventionCondensed Matter::Materials ScienceDelocalized electronlawCondensed Matter::SuperconductivityPhysics::Atomic and Molecular ClustersCluster (physics)Atomic physicsScanning tunneling microscopePhysical review letters
researchProduct