Search results for "electrospun"
showing 10 items of 29 documents
Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water.
2019
Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that…
Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model
2016
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial …
Electrospinning of Bioactive Wound-Healing Nets
2017
The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing propertie…
Innovative ready to use carrier-bacteria devices for bioremediation of oil contaminated water
2018
Bioremediation, that uses microorganisms to remove environmental pollutants, is the best way of restoring the environment due to its low cost and sustainability. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. An innovative ready to use bioremediation system to clean up oil-contaminated water was developed immobilizing highly performant marine and soil HC degrading bacteria, on biodegradable oil-absorbing carriers. Two soil Actinobacteria (Gordonia sp. SoCg, Nocardia sp. SoB) and two marine Gammaproteobacteria (Alcanivorax sp. SK2, Oleibacter sp.5), were immobilized on biopolymeric membranes prepared by electrospin…
Micro-Architecture Based Structural Model for Elastomeric Electrospun Scaffolds.
2010
Effects of Rastering Velocity on Electrospun Polyeurthane Structure and Mechanical Properties
2010
Hydrothermal aging of carbon reinforced epoxy laminates with nanofibrous mats as toughening interlayers
2016
Electrospun mats have been applied as toughening interlayers in high performance carbon fiber epoxy composites. While the toughening mechanism exerted by the mat at the interface is the subject of several recent studies, no investigations are reported on the aging behaviour of laminates comprising these nanostructured elements. This work investigates the influence of the combined effect of water and temperature (90 °C) on laminates with Nylon 6,6 electrospun membranes placed either at the middle plane only or at each interlayer. The water-uptake behaviour is modelled by a two-stage diffusion model and compared with the behaviour of the neat resin and of the laminate without mats. Interestin…
Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripote…
2016
Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …
Atomic layer deposition of Ti-Nb-O thin films onto electrospun fibers for fibrous and tubular catalyst support structures
2018
Here, the authors report on the preparation of core-shell carbon-ceramic fibrous as well as ceramic tubular catalyst supports utilizing electrospinning and atomic layer deposition (ALD). In this paper, ALD of Ti-Nb-O thin films using TiCl4, Nb(OEt)5, and H2O as precursors is demonstrated. According to the time-of-flight-elastic recoil detection analysis and Rutherford backscattering spectrometry, carbon and hydrogen impurities were relatively low, but depend on the pulsing ratio of the precursors. Optimized ALD process was used for coating of sacrificial electrospun polyvinyl alcohol (PVA) template fibers to yield tubular Ti-Nb-O structures after thermal or solution based PVA removal. Anoth…
Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates
2018
New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scatterin…