Search results for "field-effect"

showing 10 items of 61 documents

Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors

2020

Amongst the different existing methods to passivate black phosphorus (BP) from environmental degradation, the noncovalent functionalization with perylene diimides (PDI) has been postulated as one of the most promising routes because it allows preserving its electronic properties. This work describes the noncovalent functionalization and outstanding environmental protection of BP with tailor made PDI having peri-amide aromatic side chains, which include phenyl and naphthyl groups, exhibiting a significantly increased molecule-BP interaction. These results are rationalized by density functional theory (DFT) calculations showing that the adsorption energies are mainly governed by van der Waals…

Materials sciencePassivation010405 organic chemistryMechanical EngineeringNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBlack phosphorus0104 chemical scienceschemistry.chemical_compoundchemistryMechanics of Materialsddc:540Surface modificationField-effect transistor0210 nano-technologyMaterialsPerylene
researchProduct

Surface plasmon effects on carbon nanotube field effect transistors

2011

Herein, we experimentally demonstrate surface plasmon polariton (SPP) induced changes in the conductivity of a carbon nanotube field effect transistor (CNT FET). SPP excitation is done via Kretschmann configuration while the measured CNT FET is situated on the opposite side of the metal layer away from the laser, but within reach of the launched SPPs. We observe a shift of 0.4 V in effective gate voltage. SPP-intermediated desorption of physisorbed oxygen from the device is discussed as a likely explanation of the observed effect. This effect is visible even at low SPP intensities and within a near-infrared range. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)transistoriNanotechnologyCarbon nanotubehiilinanoputkiplasmonicslaw.inventionlawfield effect transistorspolaritonitPlasmonta114carbon nanotubesbusiness.industryhiilinanoputketSurface plasmonNanofysiikkananoscienceSurface plasmon polaritonCarbon nanotube field-effect transistorpintaplasmonitCarbon nanotube quantum dotplasmoniOptoelectronicsField-effect transistorbusinessnanotube devicesLocalized surface plasmon
researchProduct

Nanocrystal metal-oxide-semiconductor memories obtained by chemical vapor deposition of Si nanocrystals

2002

We have realized nanocrystal memories by using silicon quantum dots embedded in silicon dioxide. The Si dots with the size of few nanometers have been obtained by chemical vapor deposition on very thin tunnel oxides and subsequently coated with a deposited SiO2 control dielectric. A range of temperatures in which we can adequately control a nucleation process, that gives rise to nanocrystal densities of ∼3×1011 cm−2 with good uniformity on the wafer, has been defined. The memory effects are observed in metal-oxide-semiconductor capacitors or field effect transistors by significant and reversible flat band or threshold voltage shifts between written and erased states that can be achieved by …

Materials scienceSiliconPhysics and Astronomy (miscellaneous)business.industryGeneral EngineeringOxidechemistry.chemical_elementNanotechnologyChemical vapor depositionSettore ING-INF/01 - ElettronicaThreshold voltagechemistry.chemical_compoundchemistryNanocrystalMOSFETOptoelectronicsWaferField-effect transistorElectrical and Electronic EngineeringbusinessSurfaces and Interface
researchProduct

Efficiency comparison between SiC- and Si-based active neutral-point clamped converters

2015

This paper presents an efficiency comparison between silicon-carbide technology and silicon technology. In order to achieve this, the efficiency of an active neutral-point clamped converter built up with silicon carbide power-devices is compared with the efficiency of an active neutral-point clamped converter built up with silicon power-devices, under a particular operating mode and a particular selection of devices. Firstly, overall losses of both converters are estimated. Then, experimental tests are carried out to measure their overall losses and efficiency. Finally, experimental results are compared with the estimations to support the analysis. The efficiency of the SiC converter is hig…

Materials scienceSiliconchemistry.chemical_elementTransistorschemistry.chemical_compoundMOSFETSilicon carbideElectronic engineeringMetal oxide semiconductor field-effect transistorsSiC MOSFETPoint (geometry)Metal oxide semiconductorsTransistors MOSFETbusiness.industryWide-bandgap semiconductor:Enginyeria electrònica [Àrees temàtiques de la UPC]ConvertersMetall-òxid-semiconductorschemistryefficiencyEfficiency comparisonactive neutral-point clampedOptoelectronicswide band gapbusinessSiC technologymultilevel conversion
researchProduct

Supramolecular Order of Solution-Processed Perylenediimide Thin Films

2011

N,N ′ -1 H ,1 H -perfl uorobutyl dicyanoperylenecarboxydiimide (PDIF-CN 2 ), a soluble and air stable n-type molecule, undergoes signifi cant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge-on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF-CN 2 molecules. The presence of a pronounced π– π stacking is confi rmed by combining near-edge X-ray absorption fi ne structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measure…

Materials scienceSupramolecular chemistryAnalytical chemistryStackingSEMICONDUCTORSsolution processesSCALING BEHAVIORBiomaterialsACTIVE LAYERSElectrochemistryCHARGE-TRANSPORTThin filmn-Type semiconductorcharge injectionIntermolecular forcesupramolecular electronicsThin FilmCondensed Matter Physicsorganic transistorsXANESSurface energyElectronic Optical and Magnetic MaterialsChemical physicsMOBILITYGROWTHMORPHOLOGYSupramolecular electronicsAbsorption (chemistry)FIELD-EFFECT TRANSISTORSCONJUGATED POLYMERSGALLIUM-ARSENIDEAdvanced Functional Materials
researchProduct

High-Speed Memory from Carbon Nanotube Field-Effect Transistors with High-κ Gate Dielectric

2009

We demonstrate 100 ns write/erase speed of single-walled carbon nanotube field-effect transistor (SWCNT-FET) memory elements. With this high operation speed, SWCNT-FET memory elements can compete with state of the art commercial Flash memories in this figure of merit. The endurance of the memory elements is shown to exceed 104 cycles. The SWCNT-FETs have atomic layer deposited hafnium oxide as a gate dielectric, and the devices are passivated by another hafnium oxide layer in order to reduce surface chemistry effects. We discuss a model where the hafnium oxide has defect states situated above, but close in energy to, the band gap of the SWCNT. The fast and efficient charging and discharging…

Materials sciencebusiness.industryBand gapMechanical EngineeringTransistorGate dielectricBioengineeringNanotechnologyGeneral ChemistryCondensed Matter Physicslaw.inventionlawGate oxideLogic gateOptoelectronicsFigure of meritGeneral Materials ScienceField-effect transistorbusinessHigh-κ dielectricNano Letters
researchProduct

Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors

2008

Single walled carbon nanotube field-effedt transistores (SWCNT FETs) are attributed as possible building blocks for future molecular electronics. But often these transistors seem to randomly display hysteresis in their transfer characteristics. One reason for this is suggested to be water molecules adsorbed to the surface of the gate dielectric in this study we investigate the thysteresis of SWCNT FETs at different relative humidities. We find that SWCNT FETs having atomic layer deposited (ALD) Hf0 2 -Ti0 2 .- Hf0 2 as a gate dielectric retain their. ambient condition hysteresis better in dry N2 environment than the more commonly used SiO 2 gate oxide.

Materials sciencebusiness.industryGate dielectricTransistorMolecular electronicsNanotechnologyCarbon nanotubeCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionHysteresislawGate oxideOptoelectronicsField-effect transistorbusinessLayer (electronics)physica status solidi (b)
researchProduct

Electrical excitation of surface plasmons by an individual carbon nanotube transistor.

2013

We demonstrate here the realization of an integrated, electrically driven, source of surface plasmon polaritons. Light-emitting individual single-walled carbon nanotube field effect transistors were fabricated in a plasmonic-ready platform. The devices were operated at ambient conditions to act as an electroluminescence source localized near the contacting gold electrodes. We show that photon emission from the semiconducting channel can couple to propagating surface plasmons developing in the electrical terminals. Our results show that a common functional element can be operated for two different platforms emphasizing thus the high degree of compatibility between state-of-the-art nano-optoe…

Materials sciencebusiness.industrySurface plasmonTransistorPhysics::OpticsGeneral Physics and AstronomyCarbon nanotubeElectroluminescenceSurface plasmon polaritonlaw.inventionlawElectrodeOptoelectronicsField-effect transistorbusinessPlasmonPhysical review letters
researchProduct

Carbon Nanotube Radio-Frequency Single-Electron Transistor

2004

We discuss the theory of the radio-frequency single-electron transistor and the measurements that use multiwalled carbon nanotubes as active elements. Our devices made of plasma-enhanced chemical-vapor-deposition nanotubes yield charge sensitivities of 10-20 μe/ $$\sqrt {Hz}$$ . PACS numbers: 73.23.Hk, 73.63.Fg, 85.35.Gv, 85.35.Kt.

Materials sciencebusiness.industryTransistorCoulomb blockadeNanotechnologyCharge (physics)Carbon nanotubeCondensed Matter PhysicsNoise (electronics)Atomic and Molecular Physics and Opticslaw.inventionCarbon nanotube field-effect transistorlawPlasma-enhanced chemical vapor depositionOptoelectronicsGeneral Materials ScienceRadio frequencybusinessJournal of Low Temperature Physics
researchProduct

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

2017

Molybdenum disulphide (MoS2) is currently regarded as a promising material for the next generation of electronic and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET) applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the main limiting factors for suitable device performance. Furthermore, to gain a deeper understanding of MoS2 FETs under practical operating conditions, it is necessary to investigate the temperature dependence of the main electrical parameters, such as the field effect mobility (μ) an…

Materials sciencecontact resistanceSchottky barrier2General Physics and AstronomyField effectContext (language use)02 engineering and technologyMoSlcsh:Chemical technologylcsh:Technology01 natural scienceslaw.inventionPhysics and Astronomy (all)law0103 physical scienceslcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringtemperature dependencelcsh:Sciencethreshold voltage010302 applied physicslcsh:TSubthreshold conductionbusiness.industrySettore FIS/01 - Fisica SperimentaleTransistorContact resistance021001 nanoscience & nanotechnologymobilitylcsh:QC1-999Threshold voltageOptoelectronicslcsh:QField-effect transistorMaterials Science (all)MoS20210 nano-technologybusinesslcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct