Search results for "matematica"
showing 10 items of 1637 documents
Positive solutions for singular double phase problems
2021
Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.
Products of formations of finite groups
2006
[EN] In this paper criteria for a product of formations to be X-local, X a class of simple groups, are obtained. Some classical results on products of saturated formations appear as particular cases.
On X-saturated formations of finite groups
2005
[EN] In the paper, a Frattini-like subgroup associated with a class X of simple groups is introduced and analysed. The corresponding X-saturated formations are exactly the X-local ones introduced by Förster. Our techniques are also very useful to highlight the properties and behaviour of omega-local formations. In fact, extensions and improvements of several results of Shemetkov are natural consequences of our study.
On a class of supersoluble groups
2014
A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.
Primitive subgroups and PST-groups
2014
AbstractAll groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.
A New Approach to the Generalization of Darbo’s Fixed Point Problem by Using Simulation Functions with Application to Integral Equations
2019
We investigate the existence of fixed points of self-mappings via simulation functions and measure of noncompactness. We use different classes of additional functions to get some general contractive inequalities. As an application of our main conclusions, we survey the existence of a solution for a class of integral equations under some new conditions. An example will be given to support our results.
Relaxation for a Class of Control Systems with Unilateral Constraints
2019
We consider a nonlinear control system involving a maximal monotone map and with a priori feedback. We assume that the control constraint multifunction $U(t,x)$ is nonconvex valued and only lsc in the $x \in \mathbb{R}^{N}$ variable. Using the Q-regularization (in the sense of Cesari) of $U(t,\cdot )$, we introduce a relaxed system. We show that this relaxation process is admissible.
A Multiplicity result for a class of strongly indefinite asymptotically linear second order systems
2010
We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearity.
On deformation of Poisson manifolds of hydrodynamic type
2001
We study a class of deformations of infinite-dimensional Poisson manifolds of hydrodynamic type which are of interest in the theory of Frobenius manifolds. We prove two results. First, we show that the second cohomology group of these manifolds, in the Poisson-Lichnerowicz cohomology, is ``essentially'' trivial. Then, we prove a conjecture of B. Dubrovin about the triviality of homogeneous formal deformations of the above manifolds.
Morphisms of certain banach C*-modules
2000
Morphisms and representations of a class of Banach C*-modules, called CQ*algebras, are considered. Together with a general method for constructing CQ*-algebras, two different ways of extending the GNS-representation are presented.