Search results for "mesoscopic"

showing 10 items of 709 documents

Phonon-induced optical superlattice

2005

We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

DiffractionPhysicsSoeducation.field_of_studyOnesCondensed matter physicsbusiness.industryPhononCondensed Matter::OtherSuperlatticePopulationGeneral Physics and AstronomyPhysics::OpticsAcoustic PhononsÒpticaCiència dels materialsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceSemiconductorSemiconductorsModulationReflection (physics)Condensed Matter::Strongly Correlated Electronsbusinesseducation
researchProduct

Optimization of impurity profile for p-n junction in heterostructures

2005

We analyze the dopant diffusion in p-n-junction in heterostructure, by solving the diffusion equation with space-varying diffusion coefficient. For a step-wise spatial distribution we find the optimum annealing time to decrease the p-n-junction thickness and to increase the homogeneity of impurity concentration in p or n regions.

Diffusion equationMaterials scienceDopantCondensed matter physicsEpitaxial layerAnnealing (metallurgy)radiation defectsHeterojunctionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceImpurityCondensed Matter::SuperconductivityHomogeneity (physics)Effective diffusion coefficientHeterojunctionp–n junctionOptimization of impurity
researchProduct

Microscopic theory for the light-induced anomalous Hall effect in graphene

2019

We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…

Dirac (software)PopulationFOS: Physical sciences02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della Materialaw.inventionlawHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicseducationQuantumPhysicseducation.field_of_studyCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneRelaxation (NMR)dissipation021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFloquet topologyBerry connection and curvatureMicroscopic theory0210 nano-technologyPhysics - OpticsOptics (physics.optics)Physical Review B
researchProduct

EMISSION FACTORS, VEHICLE MODAL ACTIVITY AND ROAD OPERATIONS. A MESOSCOPIC APPROACH

2009

Current studies underline that vehicle emissions are highly linked to modal vehicle activity and a modal approach to traffic-related air quality modeling is suitable to estimate mobile source contribution to air quality. Pollutant emissions depend on characteristics of vehicles in traffic flow and on road operating conditions predictable after the implementation of the road project; then, the usual emission rate models do not predict properly the on-road vehicles emissions of modal traffic events, such as those ones occurring at intersections. Moreover modal activity analysis carried out at micro scale level, as required by modal emission models, will be still necessary to value reliable em…

EMISSIONS FACTORS MODAL ACTIVITY ROAD OPERATIONS MESOSCOPIC APPROACHSettore ICAR/04 - Strade Ferrovie Ed Aeroporti
researchProduct

Nonadiabatic dynamics in strongly driven diffusive Josephson junctions

2019

By measuring the Josephson emission of a diffusive Superconductor-Normal metal-Superconductor (SNS) junction at a finite temperature we reveal a non-trivial sensitivity of the supercurrent to microwave irradiation. We demonstrate that the harmonic content of the current-phase relation is modified due to the energy redistribution of quasiparticles in the normal wire induced by the electromagnetic field. The distortion originates from the phase-dependent out-of-equilibrium distribution function which is strongly affected by the ac-response of the spectral supercurrent. For phases close to $\pi$, transitions accross the Andreev gap are dynamically favored leading to a supercurrent reduction. T…

Electromagnetic fieldJosephson effectsuprajohtavuusFOS: Physical sciences01 natural sciences010305 fluids & plasmassuprajohteetSuperconducing RFCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]PhysicsSuperconductivity[PHYS]Physics [physics]Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsSupercurrentJosephson effectCondensed Matter::Mesoscopic Systems and Quantum Hall Effect[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]Distribution functionMicrowave irradiationproximity effectQuasiparticle
researchProduct

High-Temperature Hall Measurements on BaSnO3Ceramics

2005

Simultaneous Hall and conductivity measurements were performed in situ between 650° and 1050°C on n-type semiconducting BaSnO3ceramics. The variation of the Hall mobility and the Hall carrier density as a function of oxygen partial pressure between 102 and 105 Pa and of temperature was investigated. At temperatures below 900°C the conductivity exhibits a dependence on temperature and oxygen partial pressure which is mainly determined by variations of the Hall mobility. Above 900°C most of the significant dependence is due to a variation in carrier density. Furthermore, a simple defect model assuming doubly ionized oxygen vacancies and acceptor impurities is discussed for BaSnO3.

Electron mobilityCondensed matter physicsThermal Hall effectchemistry.chemical_elementPartial pressureConductivityCondensed Matter::Mesoscopic Systems and Quantum Hall EffectOxygenAcceptorCondensed Matter::Materials SciencechemistryElectrical resistivity and conductivityHall effectMaterials ChemistryCeramics and CompositesJournal of the American Ceramic Society
researchProduct

Electron scattering mechanisms inn-type indium selenide

1984

Electron scattering mechanisms in $n$-type indium selenide are investigated by means of the temperature dependence (4-500 K) of Hall mobility and the magnetic field dependence of Hall and magnetoresistance coefficients. The Schmid model for homopolar optical-phonon scattering can explain the temperature dependence of electron mobility above 40 K. The electron-phonon coupling constant is determined, ${g}^{2}=0.054$. The optical phonon involved in the process is identified as the ${A}_{1}^{\ensuremath{'}}$ phonon with energy 14.3 meV. The magnetic field dependence of Hall and magnetoresistance coefficients is discussed in terms of the Jones-Zener expansion.

Electron mobilityMaterials scienceMagnetoresistanceCondensed matter physicsPhononScatteringchemistry.chemical_elementCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistrySelenideCondensed Matter::Strongly Correlated ElectronsAtomic physicsElectron scatteringIndiumPhysical Review B
researchProduct

Electric control of the spin Hall effect by intervalley transitions

2013

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…

Electronic structureSpin currentsSpin Hall effectElectronElectronic structureCrystal symmetrySpin-polarized electronsElectron populationGallium arsenideQuantum mechanicsGeneral Materials ScienceSemiconducting galliumStrength of materials0912 Materials EngineeringRoom temperatureSpin-½Intervalley transitionPhysicsCouplingElectromotive forceCondensed matter physicsSpintronicsMechanical EngineeringMaterial systemsGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectric controlHeavy metalsMechanics of MaterialsSpin Hall effectSpin-orbit couplingsMaterial propertiesNature Materials
researchProduct

Experimental study of low-voltage surge protection device response in realistic systems

2008

Experimental results on low-voltage surge protection under fast pulses in realistic wiring systems are presented. A fast voltage pulse generator is designed to provide fast voltage pulses with short steep fronts. The effective residual voltage of protected equipment is then investigated and compared with simulation results.

Engineeringbusiness.industrySurge arresterPulse generatorElectrical engineeringHardware_PERFORMANCEANDRELIABILITYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGenerator (circuit theory)Hardware_GENERALResidual voltageHardware_INTEGRATEDCIRCUITSElectronic engineeringVoltage pulseElectrical and Electronic EngineeringSurgebusinessLow voltageVoltageElectronics Letters
researchProduct

The influence of Coulomb interaction screening on the excitons in disordered two-dimensional insulators.

2021

AbstractWe study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degen…

ExcitonScience02 engineering and technologyTwo-dimensional materials01 natural sciencesQuantum mechanicsArticlesymbols.namesakeCondensed Matter::Materials Science0103 physical sciencesBound stateCoulomb010306 general physicsQuantumPhysicsMultidisciplinaryCondensed matter physicsbusiness.industryQRHeterojunction021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductorsymbolsMedicinevan der Waals force0210 nano-technologyDegeneracy (mathematics)businessTheoretical physicsScientific reports
researchProduct