Search results for "mesoscopic"
showing 10 items of 709 documents
Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings
2007
We have carried out continuous wave and time resolved photoluminescence experiments in self-assembled In(Ga)As quantum dots and quantum rings embedded in field effect structure devices. In both kinds of nanostructures, we find a noticeable increase of the exciton radiative lifetime with the external voltage bias that must be attributed to the field-induced polarizability of the confined electron hole pair. The interplay between the exciton radiative recombination and the electronic carrier tunneling in the presence of a stationary electric field is therefore investigated and compared with a numerical calculation based on the effective mass approximation.
Correlation between optical properties and barrier composition in InxGa1−xP/GaAs quantum wells
1998
9 páginas, 11 figuras.
Experimental investigation of the kink effect and the low frequency noise properties in pseudomorphic HEMT’s
2005
The kink effect in low-noise pseudomorphic (AlGaAs/InGaAs) HEMT's has been examined in detail by investigating the steady-state and pulsed I-V characteristics, the behavior of the output conductance dispersion and the performance of the gate leakage current to understand its origin. No clear evidence of impact ionization occurrence in the InGaAs channel at kink bias conditions (V-DS.kink = 1.5 V) has been found, thus suggesting that the predominant mechanism should be attributed to trap-related phenomena. A significant rise of the gate current has been found at very high drain voltages (far from V-DS.kink) associated with low drain current values which is probably due to impact ionization o…
Skyrmion-number dependence of spin-transfer torque on magnetic bubbles
2015
We theoretically study the skyrmion-number dependence of spin-transfer torque acting on magnetic bubbles. The skymrion number of magnetic bubbles can take any integer value depending on the magnetic profile on its circumference and the size of the bubble. We find that the transverse motion of a bubble with respect to the charge current is greatly suppressed as the absolute value of the skyrmion number departs from unity, whereas the longitudinal motion is less sensitive.
"Table 9" of "Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV"
2013
v3{SP}/epsilon(CGC) (blue filled squares).
Mesoscopic organization in ionic liquids.
2017
We discuss some published results and provide new observations concerning the high level of structural complexity that lies behind the nanoscale correlations in ionic liquids (ILs) and their mixtures with molecular liquids. It turns out that this organization is a consequence of the hierarchical construction on both spatial (from ångström to several nanometer) and temporal (from fraction of picosecond to hundreds of nanosecond) scales, which requires joint use of experimental and computational tools. © 2017, Springer International Publishing Switzerland.
Mesoscopic structural organization in triphilic room temperature ionic liquids
2013
Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. The interest for these low melting, ionic compounds stems from both their technological impact and the stimulating plethora of structural and dynamic peculiarities in the mesoscopic space-time scales. It is nowadays well-established that they are characterised by an enhanced degree of mesoscopic order originating from their inherent amphiphilicity. In this contribution we highlight the existence of a further degree of mesoscopic complexity when dealing with RTILs bearing a medium length fluorous tail: such triphilic materials (they simultaneously contain polar, hydrophobic and fluorophilic m…
Charge transport through spin-polarized tunnel junction between two spin-split superconductors
2019
We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers with arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Green's functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are…
High dynamic resistance elements based on a Josephson junction array
2020
A chain of superconductor–insulator–superconductor junctions based on Al–AlOx–Al nanostructures and fabricated using conventional lift-off lithography techniques was measured at ultra-low temperatures. At zero magnetic field, the low current bias dynamic resistance can reach values of ≈1011 Ω. It was demonstrated that the system can provide a decent quality current biasing circuit, enabling the observation of Coulomb blockade and Bloch oscillations in ultra-narrow Ti nanowires associated with the quantum phase-slip effect.
Time Evolution of two distant SQUID rings irradiated with entangled electromagnetic field
2006
Two distant mesoscopic SQUID rings are irradiated with two mode microwaves produced by the same source. The time evolution of the system is studied. The two microwave modes are correlated. It is shown that the currents tunnelling through the Josephson junctions in the distant rings, are also correlated.