Search results for "nanostructures"

showing 10 items of 352 documents

Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches

2009

To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of � 5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B–N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functio…

PhononChemistryC. electronic structureBinding energyD. elastic and vibrational properties02 engineering and technologyGeneral ChemistryElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesA. BN nanostructuresOptical properties of carbon nanotubesBond lengthCondensed Matter::Materials ScienceLattice constantAb initio quantum chemistry methodsB. ab initio calculations0103 physical sciencesGeneral Materials ScienceDensity functional theoryAtomic physics010306 general physics0210 nano-technologyJournal of Physics and Chemistry of Solids
researchProduct

Photocurrent Spectroscopy Applied to the Characterization of Compositionally and Structurally Graded Materials: from Thin Films to Nanostructures

2010

Photocurrent Spectroscopy Characterization of Compositionally and Structurally Graded Materials Thin Films Nanostructures
researchProduct

Optical characterization of individual GaAs quantum dots grown with height control technique

2013

We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.

PhotoluminescenceMaterials scienceNanostructureGaAs Molecular Beam Epitaxy quantum nanostructures photoluminescencebusiness.industrySpatially resolvedGeneral Physics and AstronomyDecoupling (cosmology)EpitaxyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistryQuantum dot laserQuantum dotFISICA APLICADAOptoelectronicsbusinessFIS/03 - FISICA DELLA MATERIAEpitaxy
researchProduct

Novel Immune TiO2 Photoluminescence Biosensors for Leucosis Detection

2012

Abstract Novel immune photoluminescent biosensor, based on TiO2 nanoparticles, for retroviral leucosis detection has been developed. The photoluminescence spectra were excited by solid state laser with wavelength 355 nm and measured in the range of 370-800 nm. Original photoluminescence spectrum of TiO2 nanoparticles showed wide maximum at 515 nm. The biosensitive layer was formed by immobilization of retroviral leucosis antigens on the surface of TiO2 nanoparticles. Immobilization of antigens on TiO2 surface led to UV-shift of photoluminescence spectrum and increase of PL intensity. The response to different concentrations of retroviral leucosis antibodies has been measured. The decrease o…

PhotoluminescenceMaterials scienceTio2 nanoparticlesAnalytical chemistryleucosis detectionGeneral MedicinePhotochemistryLeucosisimmune biosensorsAdsorptionImmune systemExcited statephotoluminescenceBiosensorEngineering(all)TiO2 nanostructuresProcedia Engineering
researchProduct

Acoustically driven photon antibunching in nanowires.

2011

The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited carriers, as well as to spatially control exciton recombination in GaAs-based nanowires (NWs) on a subns time scale. The experiments are carried out in core-shell NWs transferred to a SAW delay line on a LiNbO(3) crystal. Carriers generated in the NW by a focused laser spot are acoustically transferred to a second location, leading to the remote emission of subns light pulses synchronized with the SAW phase. The dynamics of the carrier transport, investigated using spatially and time-resolved photoluminescence, is well-reproduced by computer simulations. The high-frequency contactless …

PhotoluminescencePhotonMaterials scienceMacromolecular SubstancesSurface PropertiesExcitonPhase (waves)NanowireMolecular ConformationBioengineeringGalliumArsenicalslaw.inventionCondensed Matter::Materials ScienceSonicationOpticslawMaterials TestingGeneral Materials ScienceParticle SizePhotonsPhoton antibunchingbusiness.industryMechanical EngineeringSurface acoustic waveGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsLaserNanostructuresOptoelectronicsbusinessCrystallizationNano letters
researchProduct

Scanning optical microscopy modeling in nanoplasmonics

2012

International audience; One of the main purposes of nanoplasmonics is the miniaturization of optical and electro-optical components that could be integrable in coplanar geometry. In this context, we propose a numerical model of a polarized scanning optical microscope able to faithfully reproduce both photon luminescence and temperature distribution images associated with complex plasmonic structures. The images are computed, pixel by pixel, through a complete self-consistent scheme based on the Green dyadic functions (GDF) formalism. The basic principle consists in the numerical implementation of a realistic three-dimensional light beam acting as a virtual light tip able to probe the volume…

PhotonPhysics::Optics02 engineering and technologyNANOWIRESNANOSTRUCTURES01 natural scienceslaw.inventionGOLD NANORODSOpticsOptical microscopelaw0103 physical sciencesMiniaturizationLight beam010306 general physicsPlasmonPhysicsELECTROMAGNETIC DIFFRACTIONSURFACE-PLASMONbusiness.industryNear-field opticsMISMATCHED REFRACTIVE-INDEXESStatistical and Nonlinear Physics021001 nanoscience & nanotechnologyNEAR-FIELD MICROSCOPYAtomic and Molecular Physics and OpticsNETWORKSLIGHTOptoelectronicsNear-field scanning optical microscope0210 nano-technologybusinessLuminescencePLANAR INTERFACEJournal of the Optical Society of America B
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…

PhotovoltaicsMaterials Science(all)Mechanics of MaterialsMechanical EngineeringNanoparticlesPlasmonic-enhanced light trappingSubwavelength nanostructuresSelf-assemblySDG 7 - Affordable and Clean EnergyLocalized surface plasmon resonanceThin film solar cellsCondensed Matter Physics
researchProduct

Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows

2006

A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.

PhysicsCondensed Matter - Materials ScienceNanostructureLattice Boltzmann methodsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural NetworksNanostructuresMolecular dynamicsModels ChemicalFluid dynamicsThermodynamicsComputer SimulationVector fieldStatistical physicsThin filmNanoscopic scale
researchProduct

Plenty of motion at the bottom: atomically thin liquid gold membrane

2015

The discovery of graphene some ten years ago was the first proof of a free-standing two-dimensional (2D) solid phase. Here, using quantum molecular dynamics simulations of nanoscale gold patches suspended in graphene pores, we predict the existence of an atomically thin, free-standing 2D liquid phase. The liquid phase, enabled by the exceptional planar stability of gold due to relativistic effects, demonstrates extreme fluxionality of metal nanostructures and opens possibilities for a variety of nanoscale phenomena.

PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsta114free-standing 2D liquidGraphenePhysics::OpticsFOS: Physical sciencesNanotechnologygold membranelaw.inventionMembranePlanarquantum molecular dynamics simulationslawPhase (matter)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)Nanoscale PhenomenaGeneral Materials ScienceMetal nanostructuresRelativistic quantum chemistryNanoscopic scaleNanoscale
researchProduct

On the anomalous Stark effect in a thin disc-shaped quantum dot

2010

The effect of a lateral external electric field F on an exciton ground state in an InAs disc-shaped quantum dot has been studied using a variational method within the effective mass approximation. We consider that the radial dimension of the disc is very large compared to its height. This situation leads to separating the excitonic Hamiltonian into two independent parts: the lateral confinement which corresponds to a two-dimensional harmonic oscillator and an infinite square well in the growth direction. Our calculations show that the complete description of the lateral Stark shift requires both the linear and quadratic terms in F which explains that the exciton possess nonzero lateral dipo…

PhysicsCondensed matter physicsExcitonParticle in a boxCondensed Matter PhysicsIndiumArsenicalsNanostructuressymbols.namesakeDipoleElectromagnetic FieldsVariational methodModels ChemicalStark effectPolarizabilityQuantum DotssymbolsQuantum TheoryGeneral Materials ScienceParticle SizeHamiltonian (quantum mechanics)Harmonic oscillatorJournal of Physics: Condensed Matter
researchProduct