Search results for "nanotechnologie"
showing 10 items of 211 documents
Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition.
2014
Abstract Self-assembled multilayer films made of PEDOT:PSS poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and PDDA poly(diallyldimethylammonium chloride) were prepared using layer-by-layer method. In order to modify the growth regime of the multilayer, to fabricate an electrical conductive film and to control its thickness, the effects of pH, type of electrolyte, ionic strength and polyelectrolyte concentration were investigated. Optical reflectometry measurements show that the pH of the solutions has no effect on the film growth while the adsorbed amount increases more rapidly when BaCl2 is used instead of NaCl as electrolyte. An increase in the ionic strength (with NaCl) induces…
Low-frequency band gap in cross-like holey phononic crystal strip
2018
International audience; A silicon-based cross-like holey phononic crystal (PnC) strip is proposed for the control of elastic waves in the field of micro-electro-mechanical systems (MEMS). The goal is to obtain a broad bandgap at low frequencies with a lightweight structure. In this respect, the effects of varying the in-plane and the out-of-plane geometry parameters are discussed. After design, a gap-to-midgap ratio of 47% is obtained with an intermediate filling fraction of the solid material and a small thickness of the strip. The band gap can be moved to an extremely low frequency range while keeping the strip significantly smaller than previously reported PnC strips. The transmission pr…
Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys
2017
Abstract In this study, TiMgNix samples (x = 0.2, 0.4, 0.6, 0.8, 1) have been prepared by mechanical alloying using a planetary high-energy ball mill. The structural transformations were characterized by XRD and indicated that all the as-milled TiMgNix alloys consist of mixtures of crystalline Mg and amorphous Ti-Ni-(Mg) phase. TEM analyses also show that nanocrystallites and amorphous phases coexist in the as-milled TiMgNi alloy. Electrochemical test shows that the TiMgNi composition yields the highest discharge capacity. The discharge capacities and activation properties of TiMgNix alloys linearly increase with increasing Ni content. The MgTiNi0.8 composition boasts the best cycling prope…
Complete band gap in a pillar-based piezoelectric phononic crystal slab
2016
In this paper we have shown that it is possible to obtain the complete phononic band gaps in a square lattice of pillar-based phononic crystal. Bigger phononic band gap width can be obtained by increasing the height of pillar and it filling fraction, f. It is shown that the gap-to-mid-gap ratio of pillar at h/a = 0.5 has increased by 21.2% when it height increased to 1.25 and the gap-to-mid-gap ratio has increased by 12% when the filling fraction is increased from r/a = 0.3 to 0.45. The study also shows bigger band gap width and higher central frequency can be obtained by increasing the filling fraction of pillar.
ePTFE ‐based biomedical devices: An overview of surgical efficiency
2021
International audience; Polytetrafluoroethylene (PTFE) is a ubiquitous material used for implants and medical devices in general because of its high biocompatibility and inertness: blood vessel, heart, table jawbone, nose, eyes, or abdominal wall can benefit from its properties in case of disease or injury. Its expanded version, ePTFE is an improved version of PTFE with better mechanical properties, which extends its medical applications. A material as frequently used as ePTFE with these exceptional properties deserves a review of its main uses, developments, and possibility of improvements. In this systematic review, we examined clinical trials related to ePTFE-based medical devices from t…
Experimental evidence of high spatial confinement of elastic energy in a phononic cantilever
2021
We report on experimental high spatial confinement of elastic energy in a silicon phononic cantilever for which the quality factor of a higher-order flexural resonance is increased by a factor of 27 (from Q ∼ 80 to Q ∼ 2130) with the use of a three-row phononic crystal (PnC) strip. As shown by numerical simulations performed with the finite element method, the PnC both reduces anchor loss and confines elastic energy inside the cantilever. The PnC and the cantilever are fabricated with standard clean room techniques on a silicon on insulator substrate. Optical measurements of the out-of-plane displacements are performed with a laser scanning interferometer in a frequency range around 2 MHz.
Evidence of Band Bending Induced by Hole Trapping at MAPbI3 Perovskite / Metal Interface
2016
International audience; Electron injection by tunneling from a gold electrode and hole transport properties in polycrystalline MAPbI3 has been investigated using variable temperature experiments and numerical simulations. The presence of a large and unexpected band bending at the Au/MAPbI3 interface is revealed and attributed to the trapping of holes, which enhances the injection of electrons via tunneling. These results elucidate the role of volume and interface defects in state-of-the-art hybrid perovskite semiconductors.
Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition
2020
The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{\deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sec…
Interdependence of structural and electrical properties in tantalum/tantalum oxide multilayers
2013
International audience; Dc reactive sputtering was used to deposit tantalum metal/oxide periodic nanometric multilayers using the innovative technique namely, the reactive gas pulsing process (RGPP). Different pulsing periods were used for each deposition to produce metal-oxide periodic alternations included between 5 and 80 nm. Structure, crystallinity and chemical composition of these films were systematically investigated by Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy techniques. Moreover, electrical properties were also studied by the Van der Pauw technique.
Structural and electrical properties in tungsten/tungsten oxide multilayers
2014
International audience; Tungsten and tungsten oxide periodic nanometric multilayers have been deposited by DC reactive sputtering using the reactive gas pulsing process. Different pulsing periods have been used for each deposition to produce metal-oxide periodic alternations ranging from 3.3 to 71.5 nm. The morphology, crystallinity and chemical composition of these films have been investigated by transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The produced multilayers exhibited an amorphous structure and the composition stability of WO3 sub-layers has been pointed out. Moreover, electrical properties have also been studied by the van der Pauw technique…