Search results for "none"

showing 10 items of 1921 documents

Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies

2021

Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…

0301 basic medicineAtaxiaUbiquinoneAlpha-Lipoic AcidDiseaseMitochondrionIron Chelating AgentsBioinformaticsAntioxidantsLinoleic Acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCarnitinePhysiology (medical)AnimalsHumansMedicineDeferiproneCarnitineInner mitochondrial membraneCoenzyme Q10biologyAnimalbusiness.industryBiochemistry (medical)Public Health Environmental and Occupational HealthGeneral MedicineMitochondriaIron Chelating Agent030104 developmental biologyLinoleic AcidschemistryFriedreich Ataxia030220 oncology & carcinogenesisFrataxinbiology.proteinAntioxidantmedicine.symptombusinessHumanmedicine.drugTranslational Research
researchProduct

Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability…

2017

This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction pro…

0301 basic medicineBiological AvailabilityAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyIsothiocyanatesChemical reductionOrganic chemistryHumansFood scienceEstrogens Non-SteroidalMycotoxinCytotoxicityZearalenonefood and beverages04 agricultural and veterinary sciencesGeneral MedicineMycotoxinsAllyl isothiocyanate040401 food scienceIn vitroBioavailability030104 developmental biologychemistryToxicityZearalenoneZeranolCaco-2 CellsFood ScienceFood chemistry
researchProduct

Human Achilles tendon glycation and function in diabetes

2016

Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly ( n = 22) and well ( n = 22) controlled diabetic patients, including healthy age-matched (45–70 yr) controls ( n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effe…

0301 basic medicineBlood GlucoseMaleGlycosylationPhysiologyFoot/physiologyDiabetes Mellitus/physiopathologychemistry.chemical_compound0302 clinical medicineGlycationta315GaitAchilles tendondiabetesBiomechanical Phenomena/physiologyta3141ta3142Middle Agedenzymatic and non-enzymatic collagen cross-linkingAchilles Tendon/physiopathologymusculoskeletal systemTendonBiomechanical Phenomenamedicine.anatomical_structureGait/physiologymusculoskeletal diseasesmedicine.medical_specialtyUrologyConnective tissue030209 endocrinology & metabolismta3111Achilles TendonGlycemic Index/physiology03 medical and health sciencesPhysiology (medical)Diabetes mellitusJoint capsulemedicineDiabetes MellitusHumansPentosidinebusiness.industryFootForefootmedicine.diseasefoot ulcerSurgerybody regionsBlood Glucose/physiology030104 developmental biologyCross-Sectional StudieschemistryGlycemic IndexAchilles tendon mechanicsEnzymatic and nonenzymatic collagen cross-linkingbusiness
researchProduct

The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116.

2016

IF 3.522; International audience; Zearalenone (ZEN) and Aflatoxin B1 (AFB1) are fungal secondary metabolites produced by Fusarium and Aspergillus genera, respectively. These mycotoxins are found world-wide as corn and wheat contaminants. AFB1 is probably the most toxic and carcinogenic mycotoxin. It has been demonstrated to be mutagenic, genotoxic, and hepatocarcinogenic. ZEN is a non-steroidal estrogenic mycotoxin that displays hepatotoxicity, immunotoxicity and genotoxicity. Its mutagenic and carcinogenic properties have so far remained controversial and questionable. Using the colon carcinoma cell line HCT116, we will show here that ZEN, at low concentrations, enhances cell proliferation…

0301 basic medicineBone-Marrow-CellsAflatoxinAflatoxin B1Time Factors[ SDV.TOX ] Life Sciences [q-bio]/ToxicologyToxicologymedicine.disease_causeInductionchemistry.chemical_compound0302 clinical medicineProliferation assayCell MovementZearalenonebiologyfood and beveragesCell migrationGeneral MedicineMigration assayDna-Damage030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyColonic NeoplasmsZearalenoneChromosome-AberrationsBalb/C MiceFusariumendocrine systemPreventive Role03 medical and health sciencesBotanymedicineHumansNeoplasm InvasivenessMycotoxinCarcinogenCell ProliferationWound HealingDose-Response Relationship DrugCell growthfungiClonogenic assaybiology.organism_classificationHCT116 CellsMolecular biology030104 developmental biologychemistryMcf-7 CellsFusarium ToxinsIn-VitroVitamin-ECarcinogensGenotoxicityToxicology letters
researchProduct

Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36

2019

Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…

0301 basic medicineCD36 AntigensMaleLuminescenceCD36Mice SCIDFatty Acids NonesterifiedExosomesBiochemistryFatsMiceSpectrum Analysis TechniquesAnimal CellsMice Inbred NODMedicine and Health SciencesMyocytes CardiacTissue homeostasischemistry.chemical_classificationCardiomyocytesMultidisciplinarybiologymedicine.diagnostic_testPhysicsElectromagnetic RadiationQFatty AcidsRHeartFlow CytometryLipidsCell biologyBlotSpectrophotometryPhysical SciencesMedicinelipids (amino acids peptides and proteins)FemaleCytophotometryCellular Structures and OrganellesAnatomyCellular TypesResearch ArticleAdultScienceMuscle TissueResearch and Analysis MethodsFluorescenceFlow cytometryCell Line03 medical and health sciencesIn vivomedicineDiabetes MellitusAnimalsHumansVesiclesObesityRats WistarMuscle Cells030102 biochemistry & molecular biologyFatty acidBiology and Life SciencesCell BiologyAtherosclerosisMicrovesiclesDisease Models Animal030104 developmental biologyBiological Tissuechemistrybiology.proteinCardiovascular AnatomyEx vivoPLoS ONE
researchProduct

Disruption of TCF/β-Catenin Binding Impairs Wnt Signaling and Induces Apoptosis in Soft Tissue Sarcoma Cells

2017

Abstract Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin and represent around 1% of adult cancers, being a very heterogeneous group of tumors with more than 50 different subtypes. The Wnt signaling pathway is involved in the development and in the regulation, self-renewal, and differentiation of mesenchymal stem cells, and plays a role in sarcomagenesis. In this study, we have tested pharmacologic inhibition of Wnt signaling mediated by disruption of TCF/β-catenin binding and AXIN stabilization, being the first strategy more efficient in reducing cell viability and downstream effects. We have shown that disruption of TCF/β-catenin binding with PKF118-310 produces in vi…

0301 basic medicineCancer ResearchCell SurvivalAntineoplastic AgentsApoptosisPyrimidinonesBiology03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansDoxorubicinViability assayWnt Signaling Pathwaybeta CateninCell ProliferationTriazinesCell growthCell CycleMesenchymal stem cellWnt signaling pathwayDrug SynergismSarcomaCell cycleMolecular biology030104 developmental biologyOncologyDoxorubicinCell culture030220 oncology & carcinogenesisCateninCancer researchTCF Transcription FactorsProtein Bindingmedicine.drugMolecular Cancer Therapeutics
researchProduct

Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

2016

Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a ge…

0301 basic medicineCancer ResearchNecrosismedicine.disease_causeCancer -- Treatmentchemistry.chemical_compoundOnium CompoundsMedicineCytotoxic T cellBreast -- CancerMembrane Potential Mitochondrialchemistry.chemical_classificationSuperoxideMitochondrial DNAMitochondriaNeoplastic Stem CellsFemaleOriginal Articlemedicine.symptomOligopeptidesSesquiterpenesCell SurvivalNF-E2-Related Factor 2ImmunologyBreast NeoplasmsReal-Time Polymerase Chain Reaction03 medical and health sciencesCellular and Molecular NeuroscienceDownregulation and upregulationCell Line TumorHumansParthenolideparthenolide cancer stem cell triple-negative breast cancer reactive oxygen species nuclear factor erythroid 2-related factor 2Fluorescent DyesReactive oxygen speciesbusiness.industryAcetophenonesNADPH OxidasesCell BiologyCell nuclei -- AbnormalitiesOxidative Stress030104 developmental biologychemistryApocyninImmunologyCancer researchReactive Oxygen SpeciesbusinessOxidative stressTranscription FactorsCell Death & Disease
researchProduct

Infrared microspectroscopic determination of collagen cross-links in articular cartilage

2017

Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples ( n = 27 ) were treated with threose to increase the collagen cross-linking whi…

0301 basic medicineCartilage ArticularGlycation End Products AdvancedcollagenSpectrophotometry InfraredPROTEOGLYCAN01 natural sciencesHigh-performance liquid chromatographychemistry.chemical_compoundBiomedicinsk laboratorievetenskap/teknologiPartial least squares regressionBiomedical Laboratory Science/Technologyinfrared spectroscopyPyridinolineThreoseChemistryMedicinsk bildbehandlingSTIFFNESSinfrapunaspektroskopiata3141AnatomyAtomic and Molecular Physics and OpticsDIFFUSIONElectronic Optical and Magnetic Materialsmedicine.anatomical_structuremultivariate analysisGLYCATION END-PRODUCTSNONENZYMATIC GLYCATIONBiomedical EngineeringInfrared spectroscopyI COLLAGENFORMALIN FIXATIONcross-linksOrthopaedicsBiomaterials03 medical and health sciencesmedicineAnimalsarticular cartilageFourier transform infrared spectroscopyPentosidineLeast-Squares Analysista217ChromatographyCartilage010401 analytical chemistry3126 Surgery anesthesiology intensive care radiology0104 chemical sciencesMedical Image Processing030104 developmental biologyOrtopedi1182 Biochemistry cell and molecular biologyCattleJournal of Biomedical Optics
researchProduct

Inhibitory Effect of Kurarinone on Growth of Human Non-small Cell Lung Cancer: An Experimental Study Both in Vitro and in Vivo Studies

2018

Kurarinone, a flavonoid isolated from Sophora flavescens Aiton, has been reported to have significant antitumor activity. However, the cytotoxic activity of kurarinone against non-small cell lung cancer (NSCLC) cells is still under explored. In our study, we have evaluated the inhibitory effects of kurarinone on the growth of NSCLC both in vivo and in vitro as well as the molecular mechanisms underlying kurarinone-induced A549 cell apoptosis. The results showed that kurarinone effectively inhibited the proliferation of A549 cells with little toxic effects on human bronchial epithelial cell line BEAS-2B. FASC examination and Hoechst 33258 staining assay showed that kurarinone dose-dependentl…

0301 basic medicineCaspase 303 medical and health sciences0302 clinical medicineIn vivoCytotoxic T cellPharmacology (medical)Protein kinase BPharmacologyA549 cellCaspase-9biologyChemistrymulti-targetlcsh:RM1-950apoptosiskurarinoneIn vitrorespiratory tract diseases030104 developmental biologyanticancer activitylcsh:Therapeutics. PharmacologyApoptosis030220 oncology & carcinogenesisCancer researchbiology.proteinlung carcinomaFrontiers in Pharmacology
researchProduct

Study of novel anticancer 4-thiazolidinone derivatives

2016

Abstract 4-Thiazolidinones are a known class of prospective drug-like molecules, especially in the design of new anticancer agents. Two of the most prominent subtypes of these compounds are 5-ene-2-amino(amino)-4-thiazolidinones and thiopyrano[2,3-d]thiazoles. The latter are considered to be cyclic mimetics of biologically active 5-ene-4-thiazolidinones with similar pharmacological profiles. Therefore, the aim of this study was to evaluate the impact of 4-thiazolidinone-based compounds on cytotoxicity, the apoptotic process, and metabolism in the human squamous carcinoma (SCC-15) cell line. The SCC-15 cells were cultured in phenol red-free DMEM/F12 medium supplemented with 10% FBS, hydrocor…

0301 basic medicineCell SurvivalCytotoxicityAntineoplastic AgentsApoptosisToxicology01 natural sciencesAnticancer activity03 medical and health sciencesCell Line TumormedicineHumansViability assayCytotoxicitychemistry.chemical_classificationReactive oxygen speciesL-Lactate Dehydrogenase010405 organic chemistryChemistryCaspase 3ThiazolothiopyranesBiological activityGeneral MedicineMetabolism0104 chemical sciencesSquamous carcinomaThiazoles030104 developmental biologyMechanism of actionBiochemistryMicroscopy FluorescenceCell cultureThiazolidinonemedicine.symptomReactive Oxygen SpeciesChemico-Biological Interactions
researchProduct