Search results for "plasma"

showing 10 items of 4043 documents

First light observations of the solar wind in the outer corona with the Metis coronagraph

2021

In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesAstrophysics01 natural sciencesWind speedlaw.inventionsymbols.namesakeSun: corona – solar wind – Sun: UV radiationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Sun: coronaAstronomy and AstrophysicsPlasmaSolar wind Sun: corona Sun: UV radiationSun: UV radiationCoronaSolar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTemporal resolutionPhysics::Space PhysicssymbolsOutflowDoppler effect
researchProduct

Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44

2019

Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained f…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSupernova remnants (1667)FOS: Physical sciencesAstrophysicsMolecular cloud01 natural sciencesX-ray astronomySettore FIS/05 - Astronomia E AstrofisicaPlasma astrophysics (1261)Supernova remnant0103 physical sciencesPlasma astrophysicsSupernova remnantAdiabatic processSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray astronomyMolecular cloudAstronomy and AstrophysicsPlasmaSupernovaSpace and Planetary ScienceMolecular clouds (1072)Electron temperatureX-ray astronomy (1810)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

Turbulent jet through porous obstructions under Coriolis effect: an experimental investigation

2021

AbstractThe present study has the main purpose to experimentally investigate a turbulent momentum jet issued in a basin affected by rotation and in presence of porous obstructions. The experiments were carried out at the Coriolis Platform at LEGI Grenoble (FR). A large and unique set of velocity data was obtained by means of a Particle Image Velocimetry measurement technique while varying the rotation rate of the tank and the density of the canopy. The main differences in jet behavior in various flow configurations were assessed in terms of mean flow, turbulent kinetic energy and jet spreading. The jet trajectory was also detected. The results prove that obstructions with increasing density…

010504 meteorology & atmospheric sciencesComputational MechanicsGeneral Physics and AstronomyRotation01 natural sciencesSettore ICAR/01 - Idraulica010305 fluids & plasmasPhysics::Fluid DynamicsMomentumCorioli0103 physical sciencesMean flow0105 earth and related environmental sciencesFluid Flow and Transfer ProcessesPhysicsJet (fluid)[SDE.IE]Environmental Sciences/Environmental EngineeringTurbulence[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentexperimentsMechanicsParticle image velocimetry13. Climate actionMechanics of MaterialsDragturbulent jetTurbulence kinetic energyExperiments in Fluids
researchProduct

Controlled time integration for the numerical simulation of meteor radar reflections

2016

We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …

010504 meteorology & atmospheric sciencesComputer scienceMETEORPLASMATIC OBJECTSRADAR REFLECTIONS01 natural sciencesplasmatic objectslaw.inventionINTEGRAL EQUATIONSlawRadar010303 astronomy & astrophysicsSpectroscopyEARTH ATMOSPHEREvolume integral equationRadiationPLASMANUMERICAL MODELSMathematical analysisFinite differenceNUMERICAL METHODMETEORSAtomic and Molecular Physics and OpticsCALCULATIONSControllabilityDISCRETE EXTERIOR CALCULUSAstrophysics::Earth and Planetary AstrophysicsMAGNETOPLASMADiscretizationRADAR REFLECTIONTIME DOMAIN ANALYSISVOLUME INTEGRAL EQUATIONdiscrete exterior calculusELECTROMAGNETIC SCATTERINGOpticsFINITE DIFFERENCE TIME DOMAIN METHOD0103 physical sciencesSCATTERINGTime domainmeteorsNUMERICAL METHODS0105 earth and related environmental sciencesta113ta114Computer simulationbusiness.industryta111Finite-difference time-domain methodRADARDiscrete exterior calculuselectromagnetic scatteringradar reflectionsELECTROMAGNETIC METHODmeteoritbusinessJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

On numerical broadening of particle size spectra: a condensational growth study using PyMPDATA 1.0

2021

Abstract. The work discusses the diffusional growth in particulate systems such as atmospheric clouds. It focuses on the Eulerian modeling approach in which the evolution of the probability density function describing the particle size spectrum is carried out using a fixed-bin discretization. The numerical diffusion problem inherent to the employment of the fixed-bin discretization is scrutinized. The work focuses on the applications of MPDATA family of numerical schemes. Several MPDATA variants are explored including: infinite-gauge, non-oscillatory, third-order-terms and recursive antidiffusive correction (double pass donor cell, DPDC) options. Methodology for handling coordinate transfor…

010504 meteorology & atmospheric sciencesDiscretizationComputer scienceEulerian pathProbability density functionNumerical diffusion01 natural sciences010305 fluids & plasmassymbols.namesakeTemporal resolution0103 physical sciencesConvergence (routing)symbolsApplied mathematicsSpurious relationship0105 earth and related environmental sciencesDoppler broadening
researchProduct

Plasma sloshing in pulse-heated solar and stellar coronal loops

2016

There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these os…

010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsSolar flareAstronomy and AstrophysicsPlasmaCoronal loopLight curvePulse (physics)AmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareMagnetohydrodynamicsFlare
researchProduct

Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling

2016

Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong EUV brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the $\sim~300$ km/s impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient density and magnetic field intensity. We compare the model emission i…

010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesAstrophysics01 natural sciencesAtmosphereSettore FIS/05 - Astronomia E AstrofisicaSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureSun: magnetic field010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsSun: UV radiation Supporting material: animationPlasmaCoronal loopAstronomy and AstrophysicRam pressureMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physics
researchProduct

Magnetic shuffling of coronal downdrafts

2017

Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …

010504 meteorology & atmospheric sciencesField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsSun:corona01 natural sciencesAlfvén waveSettore FIS/05 - Astronomia E AstrofisicaPhysics::Plasma Physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar flareAstronomy and AstrophysicsSun:activityPlasmaMagnetic fluxAccretion (astrophysics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

Collapse of a two-dimensional brittle granular column: Implications for understanding dynamic rock fragmentation in a landslide

2015

We investigate numerically the failure, collapse and flow of a two-dimensional brittle granular column over a horizontal surface. In our discrete element simulations, we consider a vertical monolayer of spherical particles that are initially held together by tensile bonds, which can be irreversibly broken during the collapse. This leads to dynamic fragmentation within the material during the flow. Compared to what happens in the case of a non-cohesive granular column, the deposit is much rougher, and the internal stratigraphic structure of the column is not preserved during the collapse. As has been observed in natural rockslides, we find that the deposit consists of large blocks laying on …

010504 meteorology & atmospheric sciencesGeometryLandslideRockslide01 natural sciences010305 fluids & plasmasEarth surfaceGeophysicsBrittlenessFragmentation (mass spectrometry)0103 physical sciencesMonolayerUltimate tensile strengthGeotechnical engineeringGeology0105 earth and related environmental sciencesEarth-Surface ProcessesJournal of Geophysical Research: Earth Surface
researchProduct

Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011

2016

We present study of the complex event consisting of several solar wind transients detected by Advanced Composition Explorer (ACE) on 4 -- 7 August 2011, that caused a geomagnetic storm with Dst$=-$110 nT. The supposed coronal sources -- three flares and coronal mass ejections (CMEs) occurred on 2 -- 4 August 2011 in the active region (AR) 11261. To investigate the solar origin and formation of these transients we studied kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic fie…

010504 meteorology & atmospheric sciencesMHDSolar windAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics01 natural sciencesPhysics - Space PhysicsModelsIonization0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesGeomagnetic stormPhysicsAstronomy and Astrophysics3rd-DASPlasmaCoronaSpace Physics (physics.space-ph)Solar windQC PhysicsMagnetic field13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsCoronal mass ejectionsMagnetohydrodynamicsSolar Physics
researchProduct