Search results for "prussian blue"

showing 10 items of 57 documents

The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles.

2021

Abstract: We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.

Materials scienceNanostructureNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryMoleculeMaterialsPlasmonPrussian blueNanoestructuresMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemistryNanocrystalchemistryCeramics and Composites0210 nano-technologyScience technology and societyVisible spectrumChemical communications (Cambridge, England)
researchProduct

About the Insoluble to the Soluble Prussian Blue Transformation

2009

Figure 1 shows firstly an increase of the motional resistance during the first scan of the transformation process, denoting an increase of the viscoelasticity of this structure. Soluble Prussian Blue have a localized changeover in the properties of these films just when Fe(III) fraction reaches the characteristic value. Secondly, this Figure shows an increase of motional resistance in zone 2 of the voltammetric scan, proving more evident for the last cycles than for the first ones. The increase of the motional resistance in zone 2 records an increase of the PB coercive field which at the same time, is due to an interesting changeover in the PB physiochemical properties localized at this pot…

Materials scienceSoluble Prussian blueMotional resistanceAnalytical chemistryChangeoverCoercivityViscoelasticityECS Transactions
researchProduct

Tailoring magnetic properties of electrodeposited thin films of the molecule-based magnet Cr5.5(CN)12 11.5H2O

2012

This paper reports on molecular-based magnetic thin films of Prussian blue analogues (PBA) with high critical temperatures composed of mixed-valence chromium cyanides. The thin films of PBA were synthesized by means of electrodeposition technique. Morphology and magnetic study are presented in a function of electrochemical deposition conditions. We present the electrochemical methods as a promising and effective tool for preparing molecular-based magnetic thin films of Prussian blue analogue.

Materials scienceThin filmschemistry.chemical_elementNanochemistryNanotechnology02 engineering and technology010402 general chemistryElectrochemistry01 natural sciencesChromiumchemistry.chemical_compoundMaterials Science(all)parasitic diseasesMoleculeDeposition (phase transition)General Materials ScienceThin filmMagnetic materialsPrussian blueNano ExpressPrussian blue021001 nanoscience & nanotechnologyCondensed Matter Physicsequipment and supplies0104 chemical scienceschemistryMOKEMagnetMolecule-based magnet0210 nano-technologyhuman activitiesNanoscale Research Letters
researchProduct

Evidence of Magnetoresistance in the Prussian Blue Lattice during a Voltammetric Scan

2008

This manuscript reports evidence of magnetoresistance effects in the Prussian Blue lattice during a voltammetric scan at room temperature. Accordingly, the PB is a well-known semiconductor that becomes surprisingly an almost metallic conductor in the presence of an internal magnetic field induced during the voltammetric scan. This offers appealing perspectives for the control of this interesting phenomenon from electrochemical techniques that could be used for the fabrication of the recent phase-change computational memories, which are electronically configurable. Herein, the PB magnetic properties have been monitored in situ by means of resonating magnetic microsensors based on the shift i…

Microelectromechanical systemsPrussian blueFabricationMagnetoresistancebusiness.industryNanotechnologyElectrochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetic fieldchemistry.chemical_compoundGeneral EnergySemiconductorchemistryLattice (order)OptoelectronicsPhysical and Theoretical ChemistrybusinessThe Journal of Physical Chemistry C
researchProduct

Pressure-induced electron transfer in ferrimagnetic Prussian blue analogs

2003

M\"ossbauer and magnetic susceptibility measurements were performed under pressure on three Prussian blue analogs, ${\mathrm{K}}_{0.1}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.7}\ensuremath{\cdot}18{\mathrm{H}}_{2}\mathrm{O},$ ${\mathrm{K}}_{0.28}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.76}\ensuremath{\cdot}18{\mathrm{H}}_{2}\mathrm{O},$ and ${\mathrm{Cs}}_{0.7}{\mathrm{Co}}_{4}[{\mathrm{Fe}(\mathrm{CN})}_{6}{]}_{2.9}\ensuremath{\cdot}16{\mathrm{H}}_{2}\mathrm{O}.$ A pressure-induced electron transfer ${\mathrm{Co}}^{2+}(S=\frac{3}{2})\ensuremath{-}{\mathrm{Fe}}^{3+}(S=\frac{1}{2})\ensuremath{\rightarrow}{\mathrm{Co}}^{3+}(S=0)\ensuremath{-}{\mathrm{Fe}}^{2+}(S=0)…

PhysicsMagnetizationCrystallographyPrussian bluechemistry.chemical_compoundElectron transferNuclear magnetic resonancechemistryFerrimagnetismHydrostatic pressureSpectrochemical seriesMagnetic susceptibility
researchProduct

Patterning of Magnetic Bimetallic Coordination Nanoparticles of Prussian Blue Derivatives by the Langmuir–Blodgett Technique

2012

We report a novel method to prepare patterns of nanoparticles over large areas of the substrate. This method is based on the adsorption of the negatively charged nanoparticles dispersed in an aqueous subphase onto a monolayer of the phospholipid dipalmitoyl-l-α-phosphatidylcholine (DPPC) at the air-water interface. It has been used to prepare patterns of nanoparticles of Prussian blue analogues (PBA) of different size (K(0.25)Ni[Fe(CN)(6)](0.75) (NiFe), K(0.25)Ni[Cr(CN)(6)](0.75) (NiCr), K(0.25)Ni[Co(CN)(6)](0.75) (NiCo), Cs(0.4)Co[Cr(CN)(6)](0.8) (CsCoCr), and Cs(0.4)Co[Fe(CN)(6)](0.9) (CsCoFe)). The behavior of DPPC monolayer at the air-water interface in the presence of the subphase of P…

Prussian blueAqueous solutionBrewster's angleMaterials scienceNanoparticle02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesLangmuir–Blodgett film0104 chemical sciencesCrystallographychemistry.chemical_compoundsymbols.namesakeAdsorptionchemistryMonolayerElectrochemistrysymbolsGeneral Materials Science0210 nano-technologyBimetallic stripSpectroscopyLangmuir
researchProduct

EIS and Ac-electrogravimetry study of PB films in KCl, NaCl, and CsCl aqueous solutions

2003

Prussian Blue films have been studied by means of ac-electrogravimetry, electrochemical impedance spectroscopy, and electrochemical quartz crystal microbalance in different aqueous salt solutions. Impedance data was interpreted in terms of a model based on a potential drop at the electrode/film interface and a potential drop at the film/solution interface. Quantitative results obtained by the fitting of impedance and ac-electrogravimetry allow to conclude that the main contribution to the potential drop at the film/solution interface is due to the dehydration-hydration process of cations on entering or leaving the film.

Prussian blueAqueous solutionChemistryAnalytical chemistryQuartz crystal microbalanceElectrochemistrySurfaces Coatings and FilmsDielectric spectroscopychemistry.chemical_compoundElectrogravimetryElectrodeMaterials ChemistryPhysical and Theoretical ChemistryElectrical impedance
researchProduct

Stability of Prussian Blue films on ITO electrodes: effect of different anions

1993

Abstract Transformation of insoluble newly deposited Prussian Blue (PB) into the soluble structure stabilizes the film and allows its total oxidation to Prussian Yellow. The stability of PB films in electrochemical processes in successive potential cycling experiments and under long-term chemical attack by an electrolyte depends not only on the cation that takes part but also on the nature of the anion present. In aqueous media, the sulphate ion clearly destabilizes the crystalline structure whereas the nitrate ion favours stabilization. Initial changes in the voltammograms recorded immediately after the spectroscopic tests have been detected in all media. During the immersion period water …

Prussian blueAqueous solutionChemistryGeneral Chemical EngineeringInorganic chemistryCrystal structureElectrolyteElectrochemistryRedoxAnalytical ChemistryIonchemistry.chemical_compoundPrussian BlueElectrochemistryanionsDissolutionJournal of Electroanalytical Chemistry
researchProduct

Validation of the mass response of a quartz crystal microbalance coated with Prussian Blue film for ac electrogravimetry

2000

Prussian Blue (PB) films have been considerably studied for many research applications such as electrochromic material development, new material for batteries, etc. Many analytical techniques were employed for examining PB electrochemical behaviour in solution and the quartz crystal microbalance (QCM) used in the alternative regime (ac electrogravimetry) appeared as an attractive in situ mass sensor due to its low cost and its high mass sensitivity. Unfortunately, the validity of the common Sauerbrey equation was questionable with these films or in other terms if the QCM was used as a pure mass sensor. In this work PB film is examined through acoustic measurements and the response can be in…

Prussian blueChemistryAnalytical chemistryQuartz crystal microbalanceElectrochemistryViscoelasticitylcsh:Chemistrychemistry.chemical_compoundlcsh:Industrial electrochemistrylcsh:QD1-999ElectrochromismElectrogravimetrySauerbrey equationElectrochemistryHigh masslcsh:TP250-261Electrochemistry Communications
researchProduct

Solvent-Independent Electrode Potentials of Solids Undergoing Insertion Electrochemical Reactions: Part III. Experimental Data for Prussian Blue Unde…

2012

Prussian blue-modified electrodes immersed in K+-containing solutions can be used to obtain a solvent-independent redox potential system. On the basis of theoretical modeling of diffusion processes occurring under the conditions of voltammetry of immobilized particles, voltammetric and chronoamperometric data can be combined to obtain solvent-independent electrode potentials for the K+-assisted one-electron reduction of Prussian blue to Berlin white. Data for water, MeOH, EtOH, MeCN, DMS, DMF, and NM are provided.

Prussian blueChemistryDiffusionInorganic chemistryElectrochemistryRedoxSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventchemistry.chemical_compoundGeneral EnergyStandard electrode potentialElectrodePhysical and Theoretical ChemistryVoltammetryThe Journal of Physical Chemistry C
researchProduct