Search results for "sputter deposition"

showing 10 items of 93 documents

RF magnetron-sputtered coatings deposited from biphasic calcium phosphate targets for biomedical implant applications

2017

Bioactive calcium phosphate coatings were deposited by radio-frequency magnetron sputtering from biphasic targets of hydroxyapatite and tricalcium phosphate, sintered at different mass % ratios. According to Raman scattering and X-ray diffraction data, the deposited hydroxyapatite coatings have a disordered structure. High-temperature treatment of the coatings in air leads to a transformation of the quasi-amorphous structure into a crystalline one. A correlation has been observed between the increase in the Ca content in the coatings and a subsequent decrease in Ca in the biphasic targets after a series of deposition processes. It was proposed that the addition of tricalcium phosphate to th…

DiffractionMaterials scienceBiocompatibilityBiomedical Engineeringchemistry.chemical_elementBiphasic hydroxyapatite-tricalcium02 engineering and technologyCalciumengineering.material010402 general chemistryPlasma coatings01 natural sciencesArticleBiomaterialssymbols.namesakeCoatinglcsh:TA401-492Biphasic hydroxyapatite-tricalcium phosphate targetsThin hydroxyapatite coatingslcsh:QH301-705.5Deposition (law)phosphate targetsMetallurgySputter deposition021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringlcsh:Biology (General)Cavity magnetronsymbolsengineeringBiocompatibilitylcsh:Materials of engineering and construction. Mechanics of materialsRF-magnetron sputtering0210 nano-technologyRaman scatteringBiotechnologyBioactive Materials
researchProduct

Epitaxial growth and thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films

2011

Abstract Due to their exceptional thermoelectric properties Half-Heusler alloys like MNiSn (M = Ti,Zr,Hf) have moved into focus. The growth of single crystalline thin film TiNiSn and Zr 0.5 Hf 0.5 NiSn by dc magnetron sputtering is reported. Seebeck and resistivity measurements were performed and their dependence on epitaxial quality is shown. Seebeck coefficient, specific resistivity and power factor for Zr 0.5 Hf 0.5 NiSn at room temperature were measured to be 63 μV K − 1 , 14.1 μΩ m and 0.28 mW K − 2  m − 1 , respectively. Multilayers of TiNiSn and Zr 0.5 Hf 0.5 NiSn are promising candidates to increase the thermoelectric figure-of-merit by decreasing thermal conductivity perpendicular …

DiffractionMaterials scienceCondensed matter physicsMetals and AlloysSurfaces and InterfacesSputter depositionEpitaxySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsThermal conductivityElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectMaterials ChemistryThin filmThin Solid Films
researchProduct

Preparation and Characterization of Tin Tungstate Thin Films

2015

Tin tungstate thin films were prepared by dc magnetron sputtering method and studied by x-ray diffraction, confocal microscopy and Raman spectroscopy. It is shown that the films are composed mainly of nanocrystalline α-SnWO4 phase. The possibility to use these films as write-once optical recording media is demonstrated.

DiffractionMaterials sciencebusiness.industrySputter depositionCondensed Matter PhysicsNanocrystalline materialElectronic Optical and Magnetic MaterialsCharacterization (materials science)symbols.namesakePhase (matter)Optical recordingsymbolsOptoelectronicsThin filmRaman spectroscopybusinessFerroelectrics
researchProduct

Thermal conductivity of half-Heusler superlattices

2014

Thin films and superlattices (SLs) of TiNiSn and ZrHfNiSn layers have been grown by dc magnetron sputtering on MgO (100) substrates to reduce the thermal conductivity, aiming for improvement of the thermoelectric figure of merit ZT. The thermal conductivity of 1 Wm−1K−1 was measured by the differential 3ω method for an SL with a periodicity of 8.8 nm. In addition to x-ray diffraction analysis of the SL crystal structure, smooth interfaces were confirmed by scanning/transmission electron microscopy.

DiffractionMaterials sciencebusiness.industrySuperlatticeCrystal structureSputter depositionCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsThermoelectric figure of meritThermal conductivityTransmission electron microscopyMaterials ChemistryOptoelectronicsElectrical and Electronic EngineeringThin filmbusinessSemiconductor Science and Technology
researchProduct

Recent Progress in FSMA Microactuator Developments

2009

The giant magneto-strain effect is particularly attractive for actuator applications in micro- and nanometer dimensions as it enables contact-less control of large deformations, which can hardly be achieved by other actuation principles in small space. Two different approaches are being pursued to develop ferromagnetic shape memory (FSMA) microactuators based on the magnetically induced reorientation of martensite variants: (1) the fabrication of free-standing epitaxial Ni-Mn-Ga thin film actuators in a bottom-up manner by magnetron sputtering, substrate release and integration technologies and (2) the top-down approach of thickness reduction of bulk Ni-Mn-Ga single crystals to foil specime…

FabricationMaterials sciencebusiness.industryMechanical EngineeringSubstrate (electronics)Shape-memory alloyStructural engineeringSputter depositionCondensed Matter PhysicsEngineering physicsMicroactuatorMechanics of MaterialsGeneral Materials ScienceThin filmActuatorbusinessFOIL methodMaterials Science Forum
researchProduct

Polymer/metal hybrid multilayers modified Schottky devices

2013

Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1-5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers …

Ideality factorMaterials sciencePhysics and Astronomy (miscellaneous)Layered systemNanoparticleSilicon GoldNanotechnologySingle-crystal substrates DepositionSubstrate (electronics)Poly-3-hexylthiopheneSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaNanoparticleSputteringPolymer; Au nanoparticles; Schottky devicePolymerHybrid multilayerConductive polymerSpin coatingbusiness.industryBarrier heightSchottky diodeSputter depositionCurrent-voltage measurementSemiconducting siliconSchottky deviceOptoelectronicsSelf-assemblybusinessAu nanoparticles
researchProduct

Investigations on the c-axis transport properties of YBa/sub 2/Cu/sub 3/O/sub 7-δ//PrBa/sub 2/Cu/sub 3/O/sub 7-δ/ thin film superlattices

1997

In this paper we report on the c-axis transport properties of YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta///PrBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// superlattices. We describe the preparation, characterisation and patterning of thin film superlattices into suitable mesa structures via standard photolithography. Resistive measurements were carried out which point towards an inhomogenous current distribution in the normal state resistance. Below T/sub c/, the c-axis properties determine the temperature dependent resistance. Resonant tunneling is observed with no Josephson current.

Josephson effectResistive touchscreenMaterials scienceHigh-temperature superconductivityCondensed matter physicsSuperlatticeSputter depositionCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionlawElectrical and Electronic EngineeringThin filmPhotolithographyQuantum tunnellingIEEE Transactions on Appiled Superconductivity
researchProduct

Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates

2015

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 062404 (2015) and may be found at https://doi.org/10.1063/1.4907775 This study reports the magnetotransport and magnetic properties of 20 nm-thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The longitudinal magnetoresistance (MR) of the Ni films on (011) PMN-PT, measured at room temperature in the magnetic field range of −0.3 T < μ0H < 0.3 T, is found to depend on the crystallographic direction and polarization state …

Magnetic anisotropyMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceRemanenceElectric fieldPolingddc:530Sputter depositionThin filmMagnetic fieldBIFEO3
researchProduct

Interface magnetization of ultrathin epitaxial Co2FeSi(110)/Al2O3films

2007

Element-specific magnetic properties of ultrathin epitaxial Co2FeSi(110) films were measured using x-ray magnetic circular dichroism (XMCD). The epitaxial Heusler films were grown by RF magnetron sputtering on substrates. The magnetization of thicker films as determined by XMCD is smaller than expected for a half-metallic material. In addition, the magnetization decreases considerably for films thinner than 10 nm. The thickness dependence of the magnetic moment can be described by introducing a certain number of dead layers representing a deficiency of magnetization at the interfaces. Quantitative evaluation results in a dead layer thickness of 0.8 nm at room temperature, consisting of a te…

MagnetizationMaterials scienceAcoustics and UltrasonicsMagnetic momentCondensed matter physicsMagnetic circular dichroismDead layerSputter depositionCondensed Matter PhysicsEpitaxyTemperature inducedSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsJournal of Physics D: Applied Physics
researchProduct

Growth and characterization of ZnO1−xSx highly mismatched alloys over the entire composition

2015

Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1−xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ∼ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1−xSx alloys can be tuned from 3.7 eV to …

Materials scienceAbsorption edgeX-ray photoelectron spectroscopySputteringBand gapAnalytical chemistryWide-bandgap semiconductorGeneral Physics and AstronomyHeterojunctionSputter depositionAtomic physicsThin filmJournal of Applied Physics
researchProduct