Search results for "sputtering"
showing 10 items of 136 documents
Morphology and magnetoresistance of Co2Cr0.6Fe0.4Al-based tunnelling junctions
2009
Some ferromagnetic Heusler compounds are theoretically predicted to be half metallic materials, i.e. to be characterized by a huge spin polarization at the Fermi energy. We investigate the correlations between junction preparation conditions, morphology and transport properties of planar MgO/Co2Cr0.6Fe0.4Al/AlOx/Co/CoOx/Pt tunnelling junctions. Epitaxial Co2Cr0.6Fe0.4Al thin films were deposited by dc and rf magnetron sputtering on different buffer layers (Cr, Fe, MgO) on MgO(1 0 0) substrates. By RHEED, LEED and in situ STM investigations different surface morphologies were observed. Atomically flat surfaces with Co2Cr0.6Fe0.4Al unit cell sized steps (B2 structure) were obtained by rf sput…
High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2+ primary beam
2012
Abstract We present a secondary ionization mass spectrometry (SIMS) technique for U–Pb geochronology of rutile at high spatial resolution and sensitivity using an O2+ primary ion beam coupled with surficial O2 gas deposition (O2 flooding). The O2+ beam is ~ 10 × more intense than conventionally applied O− or O2− beams at the same lateral resolution. Natural and synthetic rutile was determined to be conductive under O2+ bombardment, permitting higher excavation (sputter) rates than conventional SIMS using negatively charged O-beams without detrimental effects of sample charging. The main advantage of O2+ is rapid sputtering at shallow primary ion penetration depths. This minimizes the contri…
TCO/Ag/TCO transparent electrodes for solar cells application
2014
Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the natur…
Interface transparency and proximity effect in Nb/Cu triple layers realized by sputtering and molecular beam epitaxy
2004
We have investigated, in the framework of the proximity effect theory, the interface transparency T between Nb and Cu in the case of high quality Nb/Cu trilayers fabricated by molecular beam epitaxy (MBE) and sputtering deposition techniques. The obtained T values do not seem to be strongly influenced by the fabrication methods but more by the intrinsic properties of the two metals; a slightly higher value for T has even been deduced for the MBE prepared samples. The proximity effect in these samples has also been studied in the presence of an external magnetic field. In the parallel configuration a significant shift towards lower values of the 2D–3D crossover temperature has been observed …
Preparation and x-ray pole-figure characterization of DC-sputtered Bi-2201, Bi-2212 and Bi-2223 thin films
1997
Thin films of the three members of the superconducting series , n = 1,2,3, were prepared by diode sputtering. X-ray characterization shows that all the films are single phase and c-axis oriented and in addition they are epitaxially grown. The latter is found by x-ray pole-figure measurements taken with a four-circle diffractometer. These are emphasized in this work. AC susceptibility measurements show that, while the 2201 films are not superconducting until 4 K, the transition temperatures of the 2212 films are 82 K - 90 K and of the 2223 films 84 K - 89 K.
Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
2021
The critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga+ focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.7 μm-long W-C nanowire, an increasing side-gate voltage is found to progressively reduce the critical current of the device, down to a full suppression of the superconducting state below its critical temperature. This modulation is accounted for by the squeezing of the superconducting current by the electric field within a theoretical model based on th…
Growth characteristics of sputter-deposited thin films
1996
Thin films of the heavy-fermion superconductor were deposited on various substrate materials in various orientations by means of a quasi-multilayer sputter process. Strongly (0001)-textured growth of the hexagonal compound was found for a uranium content in the range of 23% to 28% on sapphire and with perfect in-plane order on the latter substrate material. Atomic force microscopy and scanning electron microscopy revealed a Vollmer - Weber-like growth mode resulting in the development of large compressive strain in films on . As a result the electronic transport properties - in particular the temperature dependence of the resistivity - were strongly renormalized. Strong deviations from the …
Vortex-creep activation energy in YBa2Cu3O7/PrBa2Cu3O7 superlattices
2010
Abstract YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 (YBCO/PBCO) superlattices with a different ratio of the superconducting and insulating layer thicknesses were prepared by high pressure dc sputtering. The vortex-creep activation energy U 0 was determined by analyzing the in-plane resistive transition of 200 μm wide bridges with the external magnetic field B oriented along the c axis. It was found that U 0 is proportional to the thickness of the YBCO layers, and does only weakly depend on the PBCO layer thickness, when the latter exceeds two unit cells. We observed a change in the variation of U 0 with the current I in the specimen: U 0 exhibits a plateau in the low- I region, then decreases signific…
Large Area Deposition by Radio Frequency Sputtering of Gd0.1Ce0.9O1.95 Buffer Layers in Solid Oxide Fuel Cells: Structural, Morphological and Electro…
2021
We investigate the influence of position, under large circular sputtering targets, on the final electrochemical performance of 35 mm diameter button solid oxide fuel cells with sputter-deposited Gadolinium doped Ceria barrier layers, positioned in order to almost cover the entirety of the area associated with a 120 × 80 mm2 industrial cell. We compare the results obtained via structural and morphological analysis to the Electrochemical Impedance Spectroscopy (EIS) measurements performed on the button cells, disentangling the role of different parameters. The Atomic Force Microscopy analysis makes it possible to observe a decrease in the roughness values from the peripheral to the central zo…
Growth of metal/oxide periodic multilayer : relation between structure and electrical behaviour in systems based on titanium and tungsten
2014
Periodic multilayers have found many applications in the fields of optics, mechanics or electronics. However, few studies focus on the electrical responses of the metal/oxide periodic structures versus temperature. The interest of this work was focused on the characterization of the multilayers and their electrical properties versus temperature. In TiO/Ti/TiO/TiO2 and WO/W/WO/WO3 systems produced by the reactive gas pulsing process, sample structures were established by transmission electron microscopy for sublayers thicknesses between 1.3 and 50.8 nm. Then, this study highlights a modification of conventional electrical behavior versus temperature. An empirical relationship was established…