Search results for "transistors"

showing 10 items of 68 documents

Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future.

2020

As the need for green and effective utilization of energy continues to grow, the advancements in the energy and power electronics industry are constantly driven by this need, as both industries are intertwined for obvious reasons. The developments in the power electronics industry has over the years hinged on the progress of the semiconductor device industry. The semiconductor device industry could be said to be on the edge of a turn into a new era, a paradigm shift from the conventional silicon devices to the wide band gap semiconductor technologies. While a lot of work is being done in research and manufacturing sectors, it is important to look back at the past, evaluate the current progr…

thyristorsEngineeringinsulated gate bipolar transistorslcsh:Mechanical engineering and machinery02 engineering and technologyReviewbipolar transistors01 natural sciencesElectronic switchpower semiconductor devicesPower electronics0103 physical sciences0202 electrical engineering electronic engineering information engineeringPower semiconductor devicelcsh:TJ1-1570Electrical and Electronic Engineering010302 applied physicsbusiness.industrypower semiconductor switchesMechanical Engineering020208 electrical & electronic engineeringThyristorSemiconductor deviceVDP::Teknologi: 500Work (electrical)Control and Systems EngineeringParadigm shiftState (computer science)businessTelecommunicationspower transistorsMicromachines
researchProduct

High pentacene transistor performance by engeneering morphology of solution processed thin films

2010

organic electronics thin film transistorsSettore CHIM/02 - Chimica Fisica
researchProduct

Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide.

2010

We demonstrate controllable and gate-tunable negative differential resistance in carbon nanotube field-effect transistors, at room temperature and at 4.2 K. This is achieved by effectively creating quantum dots along the carbon nanotube channel by patterning the underlying, high-kappa gate oxide. The negative differential resistance feature can be modulated by both the gate and the drain-source voltage, which leads to more than 20% change of the current peak-to-valley ratio. Our approach is fully scalable and opens up a possibility for a new class of nanoscale electronic devices using negative differential resistance in their operation.

NanostructureMaterials scienceTransistors ElectronicMacromolecular SubstancesSurface PropertiesMolecular ConformationGeneral Physics and AstronomyNanotechnologyCarbon nanotubelaw.inventionComputer Science::Emerging TechnologiesGate oxidelawMaterials TestingElectric ImpedanceNanotechnologyGeneral Materials ScienceParticle SizeTransistorGeneral EngineeringOxidesEquipment DesignCondensed Matter::Mesoscopic Systems and Quantum Hall EffectNanostructuresEquipment Failure AnalysisHysteresisQuantum dotField-effect transistorCrystallizationVoltageACS nano
researchProduct

Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet

2008

Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed

Electron mobilityMaterials scienceOrganic compounds.Analytical chemistryDipolar broadeningGeneral Physics and AstronomySpin coatingHole mobilityElectronic density of statesConductivityOxidacióCompostos orgànicsElectrical resistivity and conductivity:FÍSICA [UNESCO]Molecular clustersOrganic compoundsOxidationDopingElectrical conductivityOxidation.Molecular nanomagnetMolecular magnetic clusterMolecular magnetism Nanostructured materialsSpin coatingDopingUNESCO::FÍSICAElectric conductivity.Thin film transistorsNanostructured materialsConductivitat elèctricaNanomagnet:Enginyeria electrònica::Microelectrònica [Àrees temàtiques de la UPC]Doping ; Electrical conductivity ; Electronic density of states ; Hole mobility ; Molecular clusters ; Molecular magnetism Nanostructured materials ; Organic compounds ; Oxidation ; Spin coating ; Thin film transistorsDensity of statesNanostructured materials.Hole transport layerMaterials nanoestructuratsOrder of magnitude
researchProduct

Influence Of The Model Parameters On The Noise Performance Of Double-polysilicon BJTs For Microwave LNA's

1997

In the recent post we have measured the noise and the scattering parameters of several series of double polysilicon BJT's over the 2-6 GHz frequency range at different collector current values, according to their emitter finger number. From the experimental data, a noisy circuit model has been extracted based on a T-equivalent network. By means of the correlation matrix techniques, novel analytical expressions of the noise parameters have been derived. As a second step, a sensitivity analysis has been performed for evaluating the influence of each model element on the noise performance. The results show how to improve the characteristics of such devices for a better performance when employe…

Noise temperatureEngineeringNoise measurementbusiness.industryDouble polysilicon bipolar junction transistors Low noise amplifiers (LNA) noise modelsY-factorLow noise amplifiers (LNA)Noise figureNoise (electronics)noise modelsDouble polysilicon bipolar junction transistorsNoise generatorPhase noiseElectronic engineeringFlicker noisebusiness27th European Microwave Conference and Exhibition
researchProduct

High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric

2008

Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO$_{2}$ and T…

NanotubeGate dielectricGeneral Physics and AstronomyFOS: Physical sciencesCarbon nanotubeDielectriclaw.inventionCondensed Matter::Materials ScienceComputer Science::Emerging TechnologieslawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular ClustersThin filmCNT FETsPhysicsCondensed Matter - Materials Sciencecarbon nanotubesCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysicsTransistorfield-effect transistorsMaterials Science (cond-mat.mtrl-sci)HysteresishysteresisOptoelectronicsField-effect transistorbusiness
researchProduct

Layout influence on microwave performance of graphene field effect transistors

2018

The authors report on an in-depth statistical and parametrical investigation on the microwave performance of graphene FETs on sapphire substrate. The devices differ for the gate-drain/source distance and for the gate length, having kept instead the gate width constant. Microwave S -parameters have been measured for the different devices. Their results demonstrate that the cut-off frequency does not monotonically increase with the scaling of the device geometry and that it exists an optimal region in the gate-drain/source and gate-length space which maximises the microwave performance.

TechnologyMaterials science02 engineering and technologyHardware_PERFORMANCEANDRELIABILITYSettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionComputer Science::Hardware ArchitectureComputer Science::Emerging Technologieslaw0103 physical sciencesHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringScaling010302 applied physicsbusiness.industryGrapheneComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSWide-bandgap semiconductorSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyGraphene field effect transistorsSapphire substrateOptoelectronicsField-effect transistorGraphene0210 nano-technologyConstant (mathematics)businessMicrowaveddc:600MicrowaveHardware_LOGICDESIGN
researchProduct

Radiofrequency performances of different Graphene Field Effect Transistors geometries

2016

In this work, we investigated on microwave parameters geometry dependence in Graphene Field Effect Transistors (GFETs). A DC and RF characterization of the fabricated GFETs has been performed. The parametric analysis was carried out on 24 GFET families fabricated on the same chip and differing only for the channel length (Δ) and the gate length (Lg). In order to obtain a statistical average, each family included ten devices with the same geometry.Our study demonstrates that the output resistance and the cut-off frequency depend on both Δ and Lg. As expected, Rout increases with the graphene channel surface thus confirming the good quality of the fabrication procedures. An optimum region whi…

Graphene Graphene Field Effect Transistors Graphene microwave transistors
researchProduct

Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer

2017

International audience; A BODIPY thiophene polymer modified by extending conjugation of the BODIPY chromophore is reported. This modification induces tunability of energy levels and therefore absorption wavelengths in order to target lower energies.

Materials scienceBand gapthin-film transistors02 engineering and technology010402 general chemistryPhotochemistry[ CHIM ] Chemical Sciences01 natural scienceschemistry.chemical_compoundmolecular-orbital methodsorganometallic compounds[CHIM]Chemical SciencesPhysical and Theoretical Chemistrydensity-functional theoryAbsorption (electromagnetic radiation)valence basis-setsdistyryl-boradiazaindaceneschemistry.chemical_classificationPolymer modifiedfield-effect transistorspi-conjugated copolymers[CHIM.MATE]Chemical Sciences/Material chemistryPolymerChromophore021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsWavelengthsolar-cellsGeneral Energychemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryextended basis-setsBODIPY0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films for advanced performance transistors

2005

Solution processed Langmuir-Scha ̈fer and cast thin films of regioregular poly(2,5-dioctyloxy-1,4- phenylene-alt-2,5-thienylene) are investigated as transistor active layers. The study of their field-effect properties evidences that no transistor behavior can be seen with a cast film channel material. This was not surprising considering the twisted conformation of the polymer backbone predicted by various theoretical studies. Strikingly, the Langmuir-Scha ̈fer (LS) thin films exhibit a field-effect mobility of 5 × 10-4 cm2/V‚s, the highest attained so far with an alkoxy-substituted conjugated polymer. Extensive optical, morphological, and structural thin-film characterization supports the a…

LangmuirMaterials sciencePHENYLENEGeneral Chemical EngineeringNanotechnologylaw.inventionlawPhenyleneSTILLE COUPLING REACTIONMaterials ChemistryThin filmConductive polymerbusiness.industryREGIOREGULAR POLY(3-HEXYLTHIOPHENE)TransistorGeneral ChemistryOPTICAL-PROPERTIESSolution processedBLODGETT-FILMSCONDUCTING POLYMERSOptoelectronicsField-effect transistorPOLYTHIOPHENESFIELD-EFFECT TRANSISTORSREPEAT UNITSbusinessCONJUGATED POLYMERS
researchProduct