Search results for "vapor"

showing 10 items of 914 documents

Phosphorous doping and drawing effects on the Raman spectroscopic properties of O=P bond in silica-based fiber and preform.

2012

International audience; We report an experimental study of the doping and drawing effects on the Raman activities of phosphorus (P)-doped silica-based optical fiber and its related preform. Our data reveal a high sensitivity level in the full width at half maximum value of the 1330 cm−1 (O = P) Raman band to the P-doping level. Its increase with the P doping level does not clash with an increase in the disorder of the O = P surrendering matrix. In addition, we observe that in the central core region of the sample (higher doping level), the drawing process decreases the relative band amplitude. We tentatively suggest that this phenomenon is due to the change in the first derivate of the bond…

(060.2310) Fiber optics; (300.6450) Spectroscopy Raman; (160.2750) Glass and other amorphous materials; (060.2280) Fiber design and fabrication; (060.2290) Fiber materials.inorganic chemicalsMaterials scienceOptical fiberAnalytical chemistryChemical vapor depositionlaw.inventionCondensed Matter::Materials Sciencesymbols.namesakeOpticslawPolarizabilityCondensed Matter::SuperconductivityFiber[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryDopingtechnology industry and agricultureFiber optics Spectroscopy Raman Glass and other amorphous materials Fiber design and fabrication Fiber materialsElectronic Optical and Magnetic MaterialsFull width at half maximumsymbolsbusinessRaman spectroscopyhuman activitiesRaman scattering
researchProduct

Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors

2019

We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…

---Materials scienceAbsorption spectroscopybusiness.industryGraphenePhotodetector02 engineering and technologyChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGraphene quantum dot0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionResponsivityGeneral EnergyQuantum dotlawOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessAbsorption (electromagnetic radiation)
researchProduct

Calibration of an airborne HO&amp;lt;sub&amp;gt;&amp;lt;i&amp;gt;x&amp;lt;/i&amp;gt;&amp;lt;/sub&amp;gt; instrument using the All Pressure Altitude-b…

2020

Abstract. Laser-induced fluorescence (LIF) is a widely used technique for both laboratory-based and ambient atmospheric chemistry measurements. However, LIF instruments require calibrations in order to translate instrument response into concentrations of chemical species. Calibration of LIF instruments measuring OH and HO2 ( HOx ) typically involves the photolysis of water vapor by 184.9 nm light, thereby producing quantitative amounts of OH and HO2 . For ground-based HOx instruments, this method of calibration is done at one pressure (typically ambient pressure) at the instrument inlet. However, airborne HOx instruments can experience varying cell pressures, internal residence times, tempe…

010302 applied physicsAtmospheric ScienceMaterials science010504 meteorology & atmospheric sciencesNozzleDetectorAnalytical chemistryHumidity01 natural sciencesAtmospheric chemistry0103 physical sciencesCalibrationPressure altitudeWater vapor0105 earth and related environmental sciencesAmbient pressureAtmospheric Measurement Techniques
researchProduct

Topological insulator nanoribbon Josephson junctions: Evidence for size effects in transport properties

2020

We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width of the nanoribbon. Because the topological surface states extend over the entire circumference of the nanoribbon, the superconducting transport associated to them is carried by modes on both the top and bottom surfaces of the nanoribbon. We show that the $J_c$ reduction as a function of the nanoribbons width can be accounted for by assuming that on…

010302 applied physicsJosephson effectSurface (mathematics)SuperconductivityMaterials scienceSettore FIS/03Condensed matter physicsCondensed Matter - SuperconductivityGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)Topological insulatorPhysical vapor depositionCondensed Matter::Superconductivity0103 physical sciencesElectrodePhysics::Chemical Physics0210 nano-technologyQuantumSurface states
researchProduct

Atomic Layer Deposition and Properties of Lanthanum Oxide and Lanthanum-Aluminum Oxide Films

2006

Atomic layer deposition (ALD) of lanthanum oxide on glass and silicon substrates was examined using lanthanum silylamide, La[N(SiMe 3 ) 2 ] 3 , and water as precursors in the substrate temperature range of 150-250 °C. The effect of pulse times and precursor evaporation temperature on the growth rate and refractive index was investigated. The films remained amorphous regardless of the deposition conditions. The resulting La 2 O 3 films contained noticeable amounts of hydrogen and silicon and were chemically unstable while stored in ambient air. Lanthanum aluminum oxide films were achieved with stoichiometry close to that of LaAlO 3 at 225°C from La[N(SiMe 3 ) 2 ] 3 , Al(CH 3 ) 3 , and H 2 O.…

010302 applied physicsLanthanideSiliconProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral ChemistrySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesEvaporation (deposition)Amorphous solidAtomic layer depositionchemistry.chemical_compoundchemistryLanthanum oxide0103 physical sciencesLanthanum0210 nano-technologyChemical Vapor Deposition
researchProduct

Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapo…

2019

Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…

010302 applied physicsMaterials scienceAtmospheric pressureAlloyMetals and AlloysCrystal growth02 engineering and technologySurfaces and InterfacesChemical vapor depositionengineering.material021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMonocrystalline siliconChemical engineeringPhase (matter)0103 physical sciencesMaterials ChemistryengineeringThin film0210 nano-technologyWurtzite crystal structureThin Solid Films
researchProduct

Characteristics of industrially manufactured amorphous hydrogenated carbon (a-C:H) depositions on high-density polyethylene

2016

Industrially high-density polyethylene (HDPE) was successively covered by two types of amorphous hydrogenated carbon (a-C:H) films, one more flexible (f-type) and the other more robust (r-type). The films have been grown by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. The surface morphology of both types has been studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Contact angle measurements and Raman spectroscopy analysis were done to investigate the surface wettability and carbon chemical composition. Both types display similar morphology and grain growth pattern. Contact angle measurements revealed surfa…

010302 applied physicsMaterials scienceChemistry (all)Settore FIS/01 - Fisica Sperimentalechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionPolyethylene021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidContact angleGrain growthchemistry.chemical_compoundCarbon filmAmorphous carbonChemical engineeringchemistry0103 physical sciencesGeneral Materials Science0210 nano-technologyCarbon
researchProduct

X-Ray studies on optical and structural properties of ZnO nanostructured thin films

2006

Abstract X-ray absorption near-edge fine structure (XANES) studies have been carried out on nanostructured ZnO thin films prepared by atmospheric pressure chemical vapour deposition (APCVD). Films have been characterized by X-ray diffraction (XRD) and optical luminescence spectroscopy exciting with laser light (PL) or X-ray (XEOL). According to XRD measurements, all the APCVD samples reveal a highly (002) oriented crystalline structure. The samples have different thickness (less than 1 μm) and show significant shifts of the PL and XEOL bands in the visible region. Zn K-edge XANES spectra were recorded using synchrotron radiation at BM08 of ESRF (France), by detecting photoluminescence yield…

010302 applied physicsMaterials sciencePhotoluminescencebusiness.industryX-rayAnalytical chemistrySynchrotron radiation02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesXANESOptics0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringThin film0210 nano-technologybusinessLuminescenceSpectroscopy
researchProduct

Rock-salt CdZnO as a transparent conductive oxide

2018

Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Band gapAnalytical chemistry02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlaw0103 physical sciencesMetalorganic vapour phase epitaxy0210 nano-technologyTernary operationAbsorption (electromagnetic radiation)Deposition (law)Transparent conducting filmLight-emitting diodeApplied Physics Letters
researchProduct

Optimization of physicochemical and optical properties of nanocrystalline TiO 2 deposited on porous silicon by metal-organic chemical vapor depositio…

2020

International audience; Titanium dioxide (TiO2) is very employed in solar cells due to its interesting physicochemical and optical properties allowing high device performances. Considering the extension of applications in nanotechnologies, nanocrystalline TiO2 is very promising for nanoscale components. In this work, nanocrystalline TiO2 thin films were successfully deposited on porous silicon (PSi) by metal organic chemical vapor deposition (MOCVD) technique at temperature of 550°C for different periods of times: 5, 10 and 15 min. The objective was to optimize the physicochemical and optical properties of the TiO2/PSi films dedicated for photovoltaic application. The structural, morphologi…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and Alloys02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnologyPorous silicon01 natural sciences7. Clean energyNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsMetalChemical engineeringvisual_art0103 physical sciencesvisual_art.visual_art_medium[INFO]Computer Science [cs]Metalorganic vapour phase epitaxy0210 nano-technology[CHIM.CHEM]Chemical Sciences/Cheminformatics
researchProduct