Search results for "vesicles"

showing 10 items of 482 documents

Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma

2020

Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of …

0301 basic medicineAntineoplastic AgentsReviewexosomesExtracellular vesiclesCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesdrug delivery systems0302 clinical medicinemedicineHumansexosomedrug delivery systemmalignant pleural mesotheliomaMesotheliomaPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyDrug Carriersbusiness.industryPleural mesotheliomaMesothelioma MalignantOrganic ChemistryGeneral Medicinemedicine.diseaseMicrovesiclesComputer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisDrug deliveryCancer researchDelivery systemextracellular vesiclebusinessextracellular vesicles
researchProduct

Ticket to Ride: Targeting Proteins to Exosomes for Brain Delivery.

2017

Exosomes represent an attractive vehicle for the delivery of biomolecules. However, mechanisms for loading functional molecules into exosomes are relatively unexplored. Here we report the use of the evolutionarily conserved late-domain (L-domain) pathway as a mechanism for loading exogenous proteins into exosomes. We demonstrate that labeling of a target protein, Cre recombinase, with a WW tag leads to recognition by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into exosomes. Our results show that Ndfip1 expression acts as a molecular switch for exosomal packaging of WW-Cre that can be suppressed using the exosome inhibitor GW4869. When taken up by floxed …

0301 basic medicineBiocompatibilityRecombinant Fusion ProteinsGene ExpressionComputational biologyBiologyExosomesPermeabilityCell LineExtracellular VesiclesMice03 medical and health sciencesDrug Delivery SystemsDrug DiscoveryGeneticsAnimalsMolecular BiologyPharmacologyIntegrasesbusiness.industryImmunogenicityMembrane ProteinsRNABrainProteinsMicrovesiclesBiotechnologyProtein Transport030104 developmental biologyTargeted drug deliveryBlood-Brain BarrierCommentaryMolecular MedicineOriginal ArticleNasal AbsorptionCarrier ProteinsGenetic EngineeringbusinessMolecular therapy : the journal of the American Society of Gene Therapy
researchProduct

Extracellular vesicles in the oligodendrocyte microenvironment

2019

Abstract Extracellular vesicles (EVs) recently took centre stage as mediators of cellular crosstalk modulating the tissue microenvironment. Released by all types of neural cells, EVs may execute a broad spectrum of functions ranging from maintenance of neuronal homeostasis and regulation of neural plasticity to the spread of neurodegenerative agents. Myelinating oligodendrocytes and axons form a highly specialized functional entity that depends on intimate interactions within the oligodendrocyte-neuron niche. EVs released by oligodendrocytes are internalized by neurons in response to neuronal signals and exhibit neuroprotective properties but also may influence other cells present in the mi…

0301 basic medicineBiologyNerve Fibers MyelinatedExtracellular vesiclesNeuroprotectionExtracellular Vesicles03 medical and health sciences0302 clinical medicineNeuroplasticitymedicineAnimalsHumansMyelin SheathTissue homeostasisGeneral NeuroscienceOligodendrocyteMicrovesiclesCell biologyOligodendrogliaCrosstalk (biology)030104 developmental biologymedicine.anatomical_structureCellular Microenvironmentnervous system030217 neurology & neurosurgeryHomeostasisSignal TransductionNeuroscience Letters
researchProduct

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

Emerging insights on the biological impact of extracellular vesicle-associated ncRNAs in multiple Myeloma

2020

Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnos…

0301 basic medicineBone diseaselcsh:QH426-470AngiogenesisReviewBiologyBiochemistry03 medical and health sciences0302 clinical medicineMultiple myelomaGeneticsmedicineNon-coding RNAMolecular BiologyMultiple myelomaRNAbiomarkersBiological activityExtracellular vesicleBiomarkermedicine.diseaseNon-coding RNAlcsh:Genetics030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisDrug resistanceCancer researchBone marrowprogressionExtracellular vesicleextracellular vesicles
researchProduct

Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36

2019

Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…

0301 basic medicineCD36 AntigensMaleLuminescenceCD36Mice SCIDFatty Acids NonesterifiedExosomesBiochemistryFatsMiceSpectrum Analysis TechniquesAnimal CellsMice Inbred NODMedicine and Health SciencesMyocytes CardiacTissue homeostasischemistry.chemical_classificationCardiomyocytesMultidisciplinarybiologymedicine.diagnostic_testPhysicsElectromagnetic RadiationQFatty AcidsRHeartFlow CytometryLipidsCell biologyBlotSpectrophotometryPhysical SciencesMedicinelipids (amino acids peptides and proteins)FemaleCytophotometryCellular Structures and OrganellesAnatomyCellular TypesResearch ArticleAdultScienceMuscle TissueResearch and Analysis MethodsFluorescenceFlow cytometryCell Line03 medical and health sciencesIn vivomedicineDiabetes MellitusAnimalsHumansVesiclesObesityRats WistarMuscle Cells030102 biochemistry & molecular biologyFatty acidBiology and Life SciencesCell BiologyAtherosclerosisMicrovesiclesDisease Models Animal030104 developmental biologyBiological Tissuechemistrybiology.proteinCardiovascular AnatomyEx vivoPLoS ONE
researchProduct

2021

Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed to characterize the kinetics and localization of DNA associated with EVs. EVs were separated from human plasma using size exclusion chromatography or immuno-affinity capture for CD9+, CD63+, and CD81+ EVs. DNA was quantified with an ultra-sensitive qPCR assay targeting repetitive LINE elements, with or without DNase digestion. This model shows that a minute part of circulating cell-free DNA is asso…

0301 basic medicineCD63ChemistryKineticsExtracellular vesiclesMicrovesiclesCell biology03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicineCell-free fetal DNAHuman plasma030220 oncology & carcinogenesisGeneticsGenetics (clinical)DNACD81Genes
researchProduct

Extracellular vesicles as miRNA nano-shuttles : dual role in tumor progression

2018

[EN] Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic pote…

0301 basic medicineCancer ResearchAngiogenic SwitchLung-CancerBIOLOGIA CELULARMessenger-RNAsSuppressor-CellsDendritic cellsMetastasisLiquid biopsies03 medical and health sciencesExtracellular VesiclesImmune systemSettore BIO/13 - Biologia ApplicatamicroRNAMedicineHumansNanotechnologyPharmacology (medical)miRNAMyelogenous Leukemia-CellsExtracellular vesicles; miRNA; cancer cellsTumor microenvironmentExosome-Mediated transferbusiness.industryCancerProteinsmedicine.diseaseMicrornasMicroRNAs030104 developmental biologyOncologyTumor progressionCancer cellcancer cellsCancer researchDisease ProgressionHuman medicineExtracellular vesiclebusinessMicrovesiclesTargeted oncology
researchProduct

Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance

2019

Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-res…

0301 basic medicineCancer ResearchBiologyExtracellular Vesicles03 medical and health sciencesParacrine signalling0302 clinical medicineNeoplasmsmicroRNABiomarkers TumormedicineHumansPharmacology (medical)Liquid biopsyPharmacologyTumor microenvironmentLiquid BiopsyCancermedicine.diseasePrecision medicineMicrovesicles030104 developmental biologyInfectious DiseasesOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellDisease ProgressionCancer researchDrug Resistance Updates
researchProduct

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

2020

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

0301 basic medicineCancer ResearchCell signalingXBP1Cellular differentiationlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataTranscription factorChemistryEndoplasmic reticulumextracellular-vesiclesExtracellular vesiclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCell biologymultiple myelomaUPR-related molecules030104 developmental biologyosteoclastsOncology030220 oncology & carcinogenesisUnfolded protein responsePhosphorylationbone diseaseCancers
researchProduct