0000000000026050

AUTHOR

Christoph Förster

0000-0003-4971-5368

showing 145 related works from this author

Structure and Electronic Properties of an Expanded Terpyridine Complex of Nickel(II) [Ni(ddpd)2](BF4)2

2018

Ligand field theory010405 organic chemistrychemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryNickelchemistry.chemical_compoundCrystallographychemistrySpin-flipTerpyridineElectronic propertiesZeitschrift für anorganische und allgemeine Chemie
researchProduct

On the mechanism of imine elimination from Fischer tungsten carbene complexes

2016

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (CO)5W=C(NHFc)Fc (W(CO)5(E-2)) is synthesized by nucleophilic substitution of the ethoxy group of (CO)5W=C(OEt)Fc (M(CO)5(1Et)) by ferrocenyl amide Fc-NH– (Fc = ferrocenyl). W(CO)5(E-2) thermally and photochemically eliminates bulky E-1,2-diferrocenylimine (E-3) via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E-3 are performed by NMR, IR and UV–vis spectroscopy and liquid injection field desorption ionization (LIFDI) mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO)5(E-2) decays thermally i…

tungstenIminemechanism010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryReductive eliminationFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryAmideNucleophilic substitutionlcsh:Science010405 organic chemistryChemistryOrganic ChemistryferroceneOxidative addition0104 chemical sciencesChemistrycarbene complexesAlkoxy groupPseudorotationlcsh:QimineCarbeneBeilstein Journal of Organic Chemistry
researchProduct

Preparation and Thermochromic Switching between Phosphorescence and Thermally Activated Delayed Fluorescence of Mononuclear Copper(I) Complexes

2020

Instructive, inexpensive, and environmentally friendly laboratory syntheses of two highly luminescent copper(I) complexes CuI(PPh3)2(pyR) (pyR = pyridine, 4-cyanopyridine) are described for second-year/upper-division undergraduate inorganic chemistry students. Both complexes exhibit bright thermally activated delayed fluorescence (TADF) at ambient temperature and phosphorescence at low temperature. The laboratory experiments familiarize the students with mechanochemical syntheses, cluster and complex formation, ligand substituent effects, and the fascinating phenomenon of luminescence thermochromism.

chemistry.chemical_classificationThermochromismchemistry.chemical_elementGeneral ChemistryPhotochemistryCopperFluorescenceFluorescence spectroscopyEducationCoordination complexchemistry.chemical_compoundchemistryPyridinePhosphorescenceLuminescenceJournal of Chemical Education
researchProduct

Ferrocene compounds: methyl 1′-aminoferrocene-1-carboxylate

2010

The title compund, [Fe(C(5)H(6)N)(C(7)H(7)O(2))], features one strong intermolecular hydrogen bond of the type N-H...O=C [N...O = 3.028 (2) A] between the amine group and the carbonyl group of a neighbouring molecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H-atom acceptor in the formation of a second, weaker, hydrogen bond of the type C-H...O=C [C...O = 3.283 (2) A] with the methyl group of the ester group of a second neighbouring molecule at (x, -y - 1/2, z - 1/2). The methyl group also acts as a weak hydrogen-bond donor, symmetry-related to the latter described C-H...O=C interaction, to a third molecule at (x, -y - 1/2, z + 1/2) t…

Models MolecularHydrogen bondStereochemistryDimerCarboxylic AcidsMolecular ConformationHydrogen BondingGeneral MedicineAcceptorGeneral Biochemistry Genetics and Molecular BiologyCrystallographychemistry.chemical_compoundchemistryFerroceneCyclopentadienyl complexMoleculeFerrous CompoundsDimerizationMethyl groupCoordination geometryActa Crystallographica Section C Crystal Structure Communications
researchProduct

A Ferrocenyl Amino Substituted Stannylene as an Intramolecular Fe→Sn Lewis Adduct

2018

010405 organic chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesAdductInorganic Chemistrychemistry.chemical_compoundchemistryFerroceneIntramolecular forceLewis acids and basesTinZeitschrift für anorganische und allgemeine Chemie
researchProduct

“Tail–Tail Dimerization” of Ferrocene Amino Acid Derivatives

2010

Acid anhydrides of N-protected 1'-aminoferrocene-1-carboxylic acid (Fca) have been prepared and spectroscopically characterized (protection group Boc, Fmoc, Ac; 4a―4c). The structure of the Boc-derivative 4a has been determined by single-crystal X-ray crystallography. An intramolecular N― H···O hydrogen bond involving the carbamate units results in a ring structure containing the two ferrocene units, the anhydride moiety, and the hydrogen bond. In the crystal, the individual molecules are connected by intermolecular N-H···O hydrogen bonds of the carbamate unit. Experimental and theoretical studies suggest that the ring motif is also a dominant species in solution. Electronic communication a…

chemistry.chemical_classificationHydrogen bondIntermolecular forceRing (chemistry)Medicinal chemistryAmino acidInorganic Chemistrychemistry.chemical_compoundFerrocenechemistryIntramolecular forceMoleculeMoietyOrganic chemistryEuropean Journal of Inorganic Chemistry
researchProduct

A Strongly Luminescent Chromium(III) Complex Acid

2018

The synthesis, structure, reactivity, and photophysical properties of a novel acidic, luminescent chromium(III) complex [Cr(H2 tpda)2 ]3+ (23+ ) bearing the tridentate H2 tpda (2,6-bis(2-pyridylamino)pyridine) ligand are presented. Excitation of 23+ at 442 nm results in strong, long-lived NIR luminescence at 782 nm in water and in acetonitrile. X-ray diffraction analysis and IR spectroscopy reveal hydrogen-bonding interactions of the counter ions to the NH groups of 23+ in the solid state. Deprotonation of the NH groups of 23+ by using a non-nucleophilic Schwesinger base in CH3 CN switches off the luminescence. Re-protonation by using HClO4 restores the emission. In water, the pKa value of …

010405 organic chemistryChemistryOrganic ChemistryQuantum yieldInfrared spectroscopychemistry.chemical_elementGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundChromiumDeprotonationPyridineHydroxideLuminescenceAcetonitrileChemistry - A European Journal
researchProduct

Proton and Electron Transfer to a Polymer‐Supported Nitrido Molybdenum(VI) Complex

2013

Invited for the cover of this issue is the group of Katja Heinze at Johannes Gutenberg University of Mainz, Germany. The cover image shows the reactive imido molybdenum(V) intermediate that has been obtained by protonation followed by reduction of the nitrido molybdenum(VI) precursor anchored to a polymeric environment.

Inorganic ChemistryElectron transferchemistryProtonMolybdenumInorganic chemistryPolymer chemistrychemistry.chemical_elementProtonationPolymer supportedEuropean Journal of Inorganic Chemistry
researchProduct

Redox-responsive organometallic foldamers from ferrocene amino acid: Solid-phase synthesis, secondary structure and mixed-valence properties

2011

Oligoferrocenes Fmoc-Fca(n)-OMe (n=3-5) are assembled in a stepwise precise manner from Fmoc-protected ferrocene amino acid Fmoc-Fca-OH (H-Fca-OH = 1-amino-1'-ferrocene carboxylic acid; Fmoc = 9-fluorenylmethyloxycarbonyl) via amide bonds on solid supports by sequential Fmoc deprotection, acid activation and coupling steps. The resulting well-defined oligomers form ordered zigzag structures in THF solution with characteristic hydrogen bonding patterns. Electrochemical experiments reveal sequential oxidations of the individual ferrocene units in these peptides giving mixed-valent cations. Optical intervalence electron transfer is detected by intervalence transitions in the near-IR.

Models MolecularMetallocenesStereochemistryCarboxylic acidProtein Structure SecondaryInorganic Chemistrychemistry.chemical_compoundElectron transferSolid-phase synthesisPolymer chemistryOrganometallic CompoundsFerrous CompoundsAmino AcidsProtein secondary structurechemistry.chemical_classificationFluorenesValence (chemistry)Hydrogen bondSpectrum AnalysisDipeptidesAmino acidSolutionschemistryFerrocenePeptidomimeticsOxidation-ReductionDalton Transactions
researchProduct

Proton and Electron Transfer to a Polymer‐Supported Nitrido Molybdenum(VI) Complex (Eur. J. Inorg. Chem. 36/2013)

2013

Inorganic ChemistryElectron transferProtonChemistryMolybdenumInorganic chemistrychemistry.chemical_elementPolymer supportedEuropean Journal of Inorganic Chemistry
researchProduct

Redox‐Controlled Stabilization of an Open‐Shell Intermediate in a Bioinspired Enzyme Model

2018

Inorganic Chemistrychemistry010405 organic chemistryMolybdenumEnzyme modelchemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesRedoxOpen shell0104 chemical sciencesEuropean Journal of Inorganic Chemistry
researchProduct

Stable mononuclear lead(III) compound: a lead-centered radical.

2006

Compound aLead (geology)ChemistrylawRadicalInorganic chemistryX-ray crystallographyGeneral ChemistryElectron paramagnetic resonanceCatalysislaw.inventionAngewandte Chemie (International ed. in English)
researchProduct

Impact of O → S Exchange in Ferrocenyl Amides on the Structure and Redox Chemistry

2014

The conformations and redox chemistry of ferrocenyl amides have been investigated in considerable depth in the last few years, while ferrocenyl thioamides have attracted less interest so far, although distinctly different conformations and reactivity patterns are expected. Monoferrocenyl amides Fc-NHC(O)CH3 (1) and 1,1′-CH3O(O)C-Fn-NHC(O)CH3 (2) and diferrocenyl amides Fc-NHC(O)-Fc (5) and Fc-NHC(O)-Fn-NHC(O)CH3 (6) are easily transformed into the corresponding thioamides (3, 4, 7, 8) by treatment with Lawesson’s reagent (2,4-bis(p-methoxyphenyl)-1,3-dithiaphosphetane-2,4-disulfide) (Fc = Fe(C5H4)(C5H5), Fn = Fe(C5H4)2). The thioamide conformations (cis/trans) in 3, 4, 7, and 8 and the hydr…

chemistry.chemical_classificationHydrogen bondOrganic ChemistryNuclear magnetic resonance spectroscopyRedoxInorganic ChemistryCrystallographychemistryReagentElectronic communicationReactivity (chemistry)Physical and Theoretical ChemistryProtein secondary structureThioamideOrganometallics
researchProduct

Photochemistry and Redox Chemistry of an Unsymmetrical Bimetallic Copper(I) Complex

2016

The bimetallic copper(I) complex Cu2L2 (cis-1) is formed with high diasteroselectivity from [Cu(NCCH3)4][BF4] and HL (4-tert-butyl phenyl(pyrrolato-2-yl-methylene)amine) in a kinetically controlled reaction. cis-1 features a rather short Cu···Cu distance of 2.4756(6) A and is weakly emissive at room temperature in solution. Oxidatively triggered disproportionation of cis-1 yields elemental copper and the mononuclear copper(II) complex CuL2 (trans-2). One-electron reduction of trans-2 gives cuprate [2]– with a bent bis(pyrrolato) coordinated copper(I) entity. The imine donor atoms of [2]– can insert an additional copper(I) ion giving exclusively the bimetallic complex cis-1 closing the oxida…

010405 organic chemistryChemistryIminechemistry.chemical_elementDisproportionation010402 general chemistryPhotochemistry01 natural sciencesRedoxCopper0104 chemical sciencesIonInorganic Chemistrychemistry.chemical_compoundAmine gas treatingCupratePhysical and Theoretical ChemistryBimetallic stripInorganic Chemistry
researchProduct

Biferrocene Amino Acid, a Ferrocenylogoue of Ferrocene Amino Acid: Synthesis, Cross-Linking, and Redox Chemistry

2010

Access of the novel biferrocene amino acid 7 is provided by two different routes, namely, via desymmetrization of a biferrocene and via palladium-catalyzed cross-coupling of two substituted ferrocenes. The dissymmetric biferrocene 7 is head−head coupled to ureylene-bridged bis(biferrocene) 9 and also head−tail coupled to amide-bridged bis(biferrocene) 14. The monomer 7 and the dimers 9 and 14 are oxidized to mixed-valent cations 7+, 9+, 92+, and 142+. The valencies are trapped in the solid state as shown by Mossbauer and EPR spectroscopy and by X-ray diffraction analysis of [7](I3). Paramagnetic NMR shift studies (7 → 7+) suggest that the hole is localized at the N-substituted ferrocene uni…

Valence (chemistry)StereochemistryOrganic ChemistryDesymmetrizationRedoxlaw.inventionInorganic Chemistrychemistry.chemical_compoundParamagnetismCrystallographyMonomerchemistryFerrocenelawMössbauer spectroscopyPhysical and Theoretical ChemistryElectron paramagnetic resonanceOrganometallics
researchProduct

Competitive NH···Ru/Fe Hydrogen Bonding in Ferrocenyl Ruthenocenyl Tosyl Hydrazone

2016

A strong nonclassical NH···Fe intramolecular hydrogen bond (IHB) is present in the literature-known diferrocenyl tosyl hydrazone (1). Here, we confirm by NMR and IR spectroscopy as well as by XRD methods that an analogous NH···Ru IHB is present in the heavier homologue diruthenocenyl tosyl hydrazone (2). The NH···Ru IHB in 2 is stronger than the NH···Fe IHB in 1 by 6 kJ mol–1, as determined by IR spectroscopy. Further, we probed the E/Z isomer directing abilities of NH···M IHBs in the synthesis of the mixed metallocenyl compound ferrocenyl ruthenocenyl tosyl hydrazone (3). 3 is obtained as a mixture of the Z and E isomers (3a,b) with NH···Ru and NH···Fe IHBs, respectively. At 111 °C, 3a is …

chemistry.chemical_classification010405 organic chemistryHydrogen bondOrganic ChemistryInfrared spectroscopyHydrazone010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundTosylchemistryIntramolecular forcePhysical and Theoretical ChemistryOrganometallics
researchProduct

Crystalline Non‐Equilibrium Phase of a Cobalt(II) Complex with Tridentate Ligands

2015

In six-coordinate complexes, flexible tridentate ligands enable mer, cis-fac, and trans-fac stereoisomers. With labile metal ions of the first transition metal series, typically only the final thermodynamic product is available because of the rapid isomerization processes. Here we report on the structural characterization of a so far elusive kinetic intermediate of [Co(ddpd)2](BF4)2 (1; ddpd = N,N′-dimethyl-N,N′-dipyridine-2-yl-pyridine-2,6-diamine). Microcrystals of the cis-fac isomer of 1 were obtained by rapid precipitation. The solid-state structure of cis-fac-1 was determined from electron diffraction data.

Inorganic ChemistryCrystallographyEquilibrium phaseElectron diffractionTransition metalChemistryPrecipitation (chemistry)Metal ions in aqueous solutionchemistry.chemical_elementKinetic energyCobaltIsomerizationEuropean Journal of Inorganic Chemistry
researchProduct

Conformational Switching of Multi-Responsive Ferrocenyl-Phenol Conjugates

2016

Multifunctional conformational switches based on the ferrocenyl-salicylic acid amide motif with increasing additional complexity at the Fc moiety (R = COOMe, CONHEt, CONHFc; H-2–H-4; Fc = ferrocenyl) have been prepared and their preferred secondary structures in solution have been elucidated by NMR and IR spectroscopy in combination with conformational searches based on DFT calculations. Their distinct conformational responses to deprotonation ([2]––[4]–) and oxidation ([H-2]+·–[H-4]+·) have been revealed by IR, EPR, and UV/Vis spectroscopy as well as by DFT calculations. Deprotonation inverts all amide units (double amide twist) whereas oxidation selectively flips the terminal amide unit (…

010405 organic chemistryChemistryStereochemistryOrganic ChemistryInfrared spectroscopy010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundDeprotonationlawAmideMoietyPhenolPhenolsPhysical and Theoretical ChemistryElectron paramagnetic resonanceSpectroscopyEuropean Journal of Organic Chemistry
researchProduct

A Heteroleptic Push-Pull Substituted Iron(II) Bis(tridentate) Complex with Low-Energy Charge-Transfer States

2014

A heteroleptic iron(II) complex [Fe(dcpp)(ddpd)](2+) with a strongly electron-withdrawing ligand (dcpp, 2,6-bis(2-carboxypyridyl)pyridine) and a strongly electron-donating tridentate tripyridine ligand (ddpd, N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reported. Both ligands form six-membered chelate rings with the iron center, inducing a strong ligand field. This results in a high-energy, high-spin state ((5) T2 , (t2g )(4) (eg *)(2) ) and a low-spin ground state ((1) A1 , (t2g )(6) (eg *)(0) ). The intermediate triplet spin state ((3) T1 , (t2g )(5) (eg *)(1) ) is suggested to be between these states on the basis of the rapid dynamics after photoexcitation. The low-energy …

Ligand field theorySpin statesLigandOrganic ChemistryGeneral ChemistryPhotochemistryElectrochemistryCatalysislaw.inventionCrystallographychemistry.chemical_compoundchemistrylawExcited statePyridineGround stateElectron paramagnetic resonanceChemistry - A European Journal
researchProduct

Solution Conformation and Self‐Assembly of Ferrocenyl(thio)ureas

2016

Conformations and (dis)assembly processes of ureas and thioureas are of fundamental importance in supramolecular chemistry, anion binding, or crystal engineering, both in solution and in the solid state. For sensing and switching processes a redox-active unit, such as the ferrocene/ferrocenium couple, is especially suitable. Here, self-assembly processes of redox-active ferrocenyl(thio)ureas FcNHC(X)NHR [X = O, R = Fc (1), Ph (2), 1-naphthyl (3), Me (4), Et (5); X = S, R = Fc (6), 1-anthracenyl (7)] through hydrogen bonds – both in the solid state and in THF and CH2Cl2 solution – are reported. Special emphasis is placed on the impact of nonclassical intramolecular NH···Fe hydrogen bonds in …

010405 organic chemistryHydrogen bondStereochemistrySupramolecular chemistryThio-010402 general chemistryCrystal engineering01 natural sciencesRedox0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographyFerrocenechemistryIntramolecular forceAnion bindingEuropean Journal of Inorganic Chemistry
researchProduct

Cover Feature: A Strongly Luminescent Chromium(III) Complex Acid (Chem. Eur. J. 48/2018)

2018

ChromiumChemistryFeature (computer vision)Organic ChemistryInorganic chemistrychemistry.chemical_elementCover (algebra)General ChemistryLuminescenceCatalysisChemistry - A European Journal
researchProduct

[Cr(ddpd)2]3+: ein molekulares, wasserlösliches, hoch NIR-lumineszentes Rubin-Analogon

2015

Materials scienceGeneral MedicineAngewandte Chemie
researchProduct

Titelbild: Luminescence and Light‐Driven Energy and Electron Transfer from an Exceptionally Long‐Lived Excited State of a Non‐Innocent Chromium(III) …

2019

ChromiumElectron transferMaterials sciencechemistryExcited stateLight drivenchemistry.chemical_elementCover (algebra)General MedicineAtomic physicsLuminescenceAngewandte Chemie
researchProduct

Gold(ii) in redox-switchable gold(i) catalysis

2019

Chemical communications 55(32), 4615 - 4618 (2019). doi:10.1039/C9CC00283A

Metals and AlloysHalideGeneral Chemistry540Combinatorial chemistryRedoxCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysischemistry.chemical_compoundchemistryddc:540Materials ChemistryCeramics and CompositesBenzamide
researchProduct

Cobaltocenium substituents as electron acceptors in photosynthetic model dyads

2017

Abstract Cobaltocenium carboxylic acid hexafluorophosphate has been attached to a zinc(II) meso-tetraphenyl porphyrin chromophore via an amide linkage. Optical and electrochemical studies reveal that the metallocene and the porphyrin interact only negligibly in the ground state of the dyad. Photoinduced charge-shift from the zinc porphyrin to the cobaltocenium substituent to give the zinc porphyrin radical cation and the cobaltocene occurs upon exciting the porphyrin with light. Steady state emission, time-resolved fluorescence and transient absorption pump–probe spectroscopy in addition to density functional theory calculations suggest that the charge shift to the cobaltocenium substituent…

010405 organic chemistryOrganic ChemistrySubstituentChromophore010402 general chemistryPhotochemistry01 natural sciencesBiochemistryPorphyrinPhotoinduced electron transfer0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryExcited stateHexafluorophosphateCobaltoceneMaterials ChemistryPhysical and Theoretical ChemistryTriplet stateJournal of Organometallic Chemistry
researchProduct

Effect of chelate ring expansion on Jahn-Teller distortion and Jahn-Teller dynamics in copper(II) complexes.

2012

The expanded ligand N,N'-dimethyl-N,N'-dipyridin-2-yl-pyridin-2,6-diamine (ddpd) coordinates to copper(II) ions in a meridional fashion giving the dicationic complex mer-[Cu(ddpd)(2)](BF(4))(2) (1). In the solid state at temperatures below 100 K the cations of 1 localize in Jahn-Teller elongated CuN(6) polyhedra with the longest Cu-N bond pointing in the molecular x or y directions while the z axis is constrained by the tridentate ddpd ligand. The elongated polyhedra are ordered in an antiferrodistortive way giving an idealized zincblende structure. At higher temperature dynamically averaged (fluxional) polyhedra in the molecular x/y directions are observed by multifrequency variable temper…

LigandJahn–Teller effectchemistry.chemical_elementZonal and meridionalOrbital overlapRing (chemistry)Copperlaw.inventionIonInorganic ChemistryCrystallographychemistrylawPhysical and Theoretical ChemistryElectron paramagnetic resonanceInorganic chemistry
researchProduct

Generation and Oligomerization of N-Ferrocenyl Ketenimines via Open-Shell Intermediates

2016

In the presence of oxidant (Ag[SbF6]) and base, N-ferrocenyl thioamide Fc-NHC(S)CH3 (H-1; Fc = Fe(η5-C5H5)(η5-C5H4)) converts in an unexpected multistep reaction sequence to a novel N,S-heterocyclic ring, which initiates an oligomerization reaction. Key intermediates toward the resulting complicated material are Ag6(1)6 silver clusters of the anionic N,S-chelating ligand 1− and EPR-active piano stool complexes resulting from ring-slipped cyclopentadienyl ligands, as well as electrophilic N-ferrocenyl ketenimine Fc-N═C═CH2 (2) and its ferrocenium cation 2•+ formed by hydrosulfide elimination. Mechanistic insight is achieved using X-ray diffraction and mass spectrometry, as well as EPR and NM…

chemistry.chemical_classification010405 organic chemistryStereochemistryLigandOrganic Chemistry010402 general chemistryRing (chemistry)01 natural sciences0104 chemical sciencesKeteniminelaw.inventionInorganic Chemistrychemistry.chemical_compoundchemistryCyclopentadienyl complexlawPolymer chemistryElectrophilePhysical and Theoretical ChemistryElectron paramagnetic resonanceOpen shellThioamideOrganometallics
researchProduct

Consequences of the One-Electron Reduction and Photoexcitation of Unsymmetric Bis-imidazolium Salts

2012

Coupling of uronium salts with in situ generated N-heterocyclic carbenes provides straightforward access to symmetrical [4](2+) and unsymmetrical bis-imidazolium salts [6](2+) and [9](2+) . As indicated by cyclic and square-wave voltammetry, [6](2+) and [9](2+) can be (irreversibly) reduced by one electron. The initially formed radicals [6](.+) and [9](.+) undergo further reactions, which were probed by EPR spectroscopy and density functional calculations. The final products of the two-electron reduction are the two carbenes. Upon irradiation with UV light both [6](2+) and [9](2+) emit at room temperature in solution but with dramatically different characteristics. The different fluorescenc…

ChemistryRadicalOrganic ChemistryGeneral ChemistryChromophorePhotochemistryFluorescenceRedoxCatalysislaw.inventionPhotoexcitationCrystallographylawExcited stateMoleculeElectron paramagnetic resonanceChemistry - A European Journal
researchProduct

Green-Light Activation of Push-Pull Ruthenium(II) Complexes.

2020

Abstract Synthesis, characterization, electrochemistry, and photophysics of homo‐ and heteroleptic ruthenium(II) complexes [Ru(cpmp)2]2+ (22+) and [Ru(cpmp)(ddpd)]2+ (32+) bearing the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐dipyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) are reported. The complexes possess one (32+) or two (22+) electron‐deficient dipyridyl ketone fragments as electron‐accepting sites enabling intraligand charge transfer (ILCT), ligand‐to‐ligand charge transfer (LL'CT) and low‐energy metal‐to‐ligand charge transfer (MLCT) absorptions. The latter peak around 544 nm (green light). Complex 22+ shows 3MLCT phosphorescenc…

chemistry.chemical_elementQuantum yield010402 general chemistryElectrochemistryPhotochemistry01 natural sciencesCatalysisPhotoinduced electron transferchemistry.chemical_compoundPhotochemistry | Very Important PaperluminescenceAcetonitrilerutheniumphotophysicsphotochemistryFull Paper010405 organic chemistryChemistryOrganic ChemistryGeneral ChemistryFull Papers0104 chemical sciencesRutheniumExcited stateLuminescencePhosphorescencephotocatalysisChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Boosting Vis/NIR Charge-Transfer Absorptions of Iron(II) Complexes by N-Alkylation and N-Deprotonation in the Ligand Backbone.

2017

Reversing the 3MLCT / 3MC excited state order in iron(II) complexes is a challenging objective, yet would finally result in longsought luminescent transition metal complexes with an earthabundant central ion. One approach to achieve this goal is based on low-energy charge transfer absorptions in combination with a strong ligand field. Coordinating electron rich and electron poor tridentate oligopyridine ligands with large bite angles at iron(II) enables both low-energy MLCT absorption bands around 590 nm and a strong ligand field. Variations of the electron rich ligand by introducing longer alkyl substituents destabilizes the iron(II) complex towards ligand substitution reactions while hard…

chemistry.chemical_classificationLigand field theory010405 organic chemistryChemistryLigandBand gapOrganic ChemistryGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical sciencesDeprotonationTransition metalExcited stateDensity functional theoryAlkylChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Formation and mixed-valent behaviour of a substituted tetraferrocenylstannane.

2010

A tetrasubstituted tetraferrocenylstannane is formed from 1-bromoferrocene-1′-carboxylic acid methyl ester and copper bronze. The molecular structure is almost perfectly tetrahedral with Fe⋯Fe distances of around 6 A. In solution two sequential one-electron processes and one two-electron process are indicative of mixed-valent intermediates. Intermetallic interactions have been probed by preparative oxidation, paramagnetic NMR spectroscopy, Mosbauer spectroscopy, UV/Vis/NIR spectroscopy and DFT calculations.

Models MolecularMolecular StructureNear-infrared spectroscopyMetals and AlloysAnalytical chemistryIntermetallicchemistry.chemical_elementTin CompoundsGeneral ChemistryNuclear magnetic resonance spectroscopyCrystallography X-RayCopperCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyParamagnetismchemistryMixed valentMaterials ChemistryCeramics and CompositesMoleculeFerrous CompoundsSpectroscopyChemical communications (Cambridge, England)
researchProduct

Preparation, Properties, and Reactivity of (Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)chromium(0) as Bulky Isolobal Trimetallo-amide

2015

Nucleophilic substitution of the ethoxy substituent in the Fischer carbene complex (ethoxy)(ferrocenyl)carbene(pentacarbonyl)chromium(0) (1) by ferrocenyl amide [Fc-NH]– [2-H]– gives the hetero trimetallic complex (aminoferrocenyl)(ferrocenyl)carbene (pentacarbonyl)chromium(0) (3). As the Cr(CO)5 fragment is isolobal to oxygen or sulfur 3 can be viewed as an isolobal metallo analogue to diferrocenylamide (Fc)(FcNH)C=O (4) and diferrocenylthioamide (Fc)(FcNH)C=S (5). The impact of the formal replacement of O/S by Cr(CO)5 in 3 is studied with respect to steric and electronic consequences as well as reactivity by spectroscopic, diffraction, electrochemical and theoretical methods.

Inorganic ChemistrySteric effectschemistry.chemical_compoundchemistryFerroceneAmideTransition metal carbene complexNucleophilic substitutionOrganic chemistryReactivity (chemistry)Isolobal principleMedicinal chemistryCarbeneZeitschrift für anorganische und allgemeine Chemie
researchProduct

Bioconjugates of 1’-Aminoferrocene-1-carboxylic Acid with (S)-3-Amino-2-methylpropanoic Acid and L-Alanine

2010

Formal CH 2 insertion in bioconjugates composed of 1'-aminoferrocene-1-carboxylic acid (Fca) and alanine Boc-Ala-Fca-Ala-OCH 3 gives Fca bioconjugates with the β-amino acid (S)-3-amino-2-methylpropanoic acid (Aib). The novel homologous conjugates of ferrocene were fully characterized by spectroscopic and analytical methods. NMR, CD and IR spectroscopy in concert with DFT calculations suggest that the formal "L-Ala-to-(S)-β-Aib mutations" can exert ferrocene helix inversion due to the different stereogenic carbon atoms of L -Ala and (S)-β-Aib. Furthermore, the mutation (de-)stabilizes the conserved secondary structure with two intramolecular hydrogen bonds, depending on the "mutation site". …

Inorganic ChemistryAlaninechemistry.chemical_compoundbioorganometallic chemistry ; beta-amino acid ; ferrocene ; hydrogen bonds ; conformational analysisFerroceneChemistryHydrogen bondStereochemistryIntramolecular forceHelixMetalloceneProtein secondary structureStereocenter
researchProduct

Stereochemical Consequences of Oxygen Atom Transfer and Electron Transfer in Imido/Oxido Molybdenum(IV, V, VI) Complexes with Two Unsymmetric Bidenta…

2012

Two equivalents of the unsymmetrical Schiff base ligand (L(tBu))(-) (4-tert-butyl phenyl(pyrrolato-2-ylmethylene)amine) and MoCl(2)(NtBu)O(dme) (dme = 1,2-dimethoxyethane) gave a single stereoisomer of a mixed imido/oxido Mo(VI) complex 2(tBu). The stereochemistry of 2(tBu) was elucidated using X-ray diffraction, NMR spectroscopy, and DFT calculations. The complex is active in an oxygen atom transfer (OAT) reaction to trimethyl phosphane. The putative intermediate five-coordinate Mo(IV) imido complex coordinates a PMe(3) ligand, giving the six-coordinate imido phosphane Mo(IV) complex 5(tBu). The stereochemistry of 5(tBu) is different from that of 2(tBu) as shown by NMR spectroscopy, DFT ca…

Models MolecularMagnetic Resonance SpectroscopyDenticityCoordination sphereElectronsCrystallography X-RayLigandsPhotochemistryMedicinal chemistrylaw.inventionElectron TransportInorganic Chemistrychemistry.chemical_compoundElectron transferCoordination ComplexeslawMoleculeFerrous CompoundsPhysical and Theoretical ChemistryElectron paramagnetic resonanceSchiff BasesMolybdenumSchiff baseMolecular StructureLigandStereoisomerismNuclear magnetic resonance spectroscopyOxygenEthyl EtherschemistryQuantum TheoryOxidation-ReductionInorganic Chemistry
researchProduct

A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution.

2020

Luminescence from Earth-abundant metal ions in solution at room temperature is a very challenging objective due to the intrinsically weak ligand field splitting of first-row transition metal ions, which leads to efficient nonradiative deactivation via metal-centered states. Only a handful of 3d

Ligand field theoryChemistryMetal ions in aqueous solutionVanadiumchemistry.chemical_elementGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesBiochemistryCatalysisTransition metal ions0104 chemical sciencesCondensed Matter::Materials ScienceColloid and Surface ChemistryPhysics::Plasma PhysicsSpin-flipLuminescenceJournal of the American Chemical Society
researchProduct

High emissions of greenhouse gases from grasslands on peat and other organic soils

2016

Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2 -eq. ha-1  yr-1 ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2  ha-1  yr-1 ) dominated the GHG budget. Nit…

Greenhouse EffectPeat010504 meteorology & atmospheric sciencesNitrous OxideAtmospheric sciences01 natural sciencesSoilGermanyEnvironmental ChemistryBog0105 earth and related environmental sciencesGeneral Environmental ScienceGlobal and Planetary ChangeTopsoilgeographygeography.geographical_feature_categoryEcologyCarbon sink04 agricultural and veterinary sciencesSoil carbonCarbon DioxideGrasslandGreenhouse gasSoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceKyoto ProtocolGasesMethaneGlobal Change Biology
researchProduct

The Crystal Structure of the THF Adduct of Monolithioferrocene

2015

Single crystals of [Fe(η5-C5H4)(η5-C5H5)]2Li2(thf)4 (1) were obtained from a tetrahydrofuran solution containing monolithioferrocene. The title compound crystallizes in the monoclinic space group P21 with a = 9.6589(5) A, b = 17.4285(9) A, c = 30.3116(15) A, β = 91.911(2)° and V = 5099.8(5) A3 with three independent molecules of 1. All individual molecules feature a non- symmetric almost planar Li2C2 four-membered ring with two shorter (2.118–2.215 A) and two longer Li–C distances (2.257–2.309 A). The lithium cations are each coordinated by two carbanionic atoms of two ferrocenyl substituents and two tetrahydrofuran molecules in a distorted tetrahedral fashion. All ferrocenyl moieties displ…

Inorganic ChemistryEclipsed conformationchemistry.chemical_compoundCrystallographyFerrocenechemistryMoleculeCrystal structureRing (chemistry)TetrahydrofuranMonoclinic crystal systemAdductZeitschrift für anorganische und allgemeine Chemie
researchProduct

Ligand dynamics of tert-butyl isocyanide oxido complexes of molybdenum(IV).

2014

The six-coordinate molybdenum(IV) oxido isocyanide complex 1 [Δ,Λ-OC-6-2-3-[MoO(N(p)∩N(i))2(CN(t)Bu)]; N(p)∩N(i) = 4-tert-butylphenyl(pyrrolato-2-ylmethylene)amine] is obtained in diastereomerically pure form in the solid state, as revealed by single-crystal X-ray diffraction. In solution, this stereoisomer equilibrates with the Δ,Λ-OC-6-2-4 diastereomer 2 at ambient temperature. The stereochemistry of both isomers has been elucidated by NMR, IR, and UV/vis spectroscopy in combination with density functional theory (DFT)/polarizable continuum model and time-dependent DFT calculations. The isomerization 1 → 2 is suggested to proceed via a dissociative trigonal twist with dissociation of the …

DenticityChemistryIsocyanideImineDiastereomerPhotochemistryMedicinal chemistryPolarizable continuum modelDissociation (chemistry)Inorganic Chemistrychemistry.chemical_compoundPhysical and Theoretical ChemistryIsomerizationtert-Butyl isocyanideInorganic chemistry
researchProduct

Structure and reactivity of a mononuclear gold(II) complex.

2017

Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn–Teller distortion enabled by the relativistical…

chemistry.chemical_classificationIonic radius010405 organic chemistryGeneral Chemical EngineeringHomogeneous catalysisGeneral Chemistry010402 general chemistry01 natural sciencesPorphyrin0104 chemical sciencesDivalentNitrosobenzenechemistry.chemical_compoundCrystallographyHomologous serieschemistryReactivity (chemistry)Derivative (chemistry)Nature chemistry
researchProduct

Molecular Multi‐Wavelength Optical Anion Sensors

2010

Polychromatic fingerprinting of simple anions (halides, oxo anions) is achieved by employing neutral and charged multicolor fluorescent probes based on ferrocene-spaced dansyl and naphthyl groups (1/1 + ; 2/2 + ). The conformation of the neutral double dye sensor 2 has been elucidated by NMR spectroscopic techniques (in solution), by X-ray crystallography (solid state) and by DFT calculations (gas phase). The double-dye receptors 2/2 + exhibit specific emission responses in the presence of anions X- when excited at the absorption maxima of the dyes (fingerprint).

Inorganic ChemistryChemistryExcited stateAnalytical chemistrySolid-statePhysical chemistryHalideMulti wavelengthAbsorption (chemistry)FluorescenceFluorescence spectroscopyIonEuropean Journal of Inorganic Chemistry
researchProduct

Cover Feature: Alkali Blues: Blue‐Emissive Alkali Metal Pyrrolates (Chem. Eur. J. 26/2019)

2019

Feature (computer vision)ChemistryOrganic ChemistryInorganic chemistryCover (algebra)General ChemistryBluesAlkali metalCatalysisChemistry – A European Journal
researchProduct

Three‐in‐One Crystal: The Coordination Diversity of Zinc Polypyridine Complexes

2017

The synthesis, structural and photophysical properties of two novel zinc(II) complexes bearing the tridentate ddpd (N,N' dimethyl N,N' dipyridin 2 ylpyridine 2,6 diamine) ligand are presented. Structural investigations have been carried out by single crystal X-ray diffractometry, NMR spectroscopy and Density Functional Theory calculations, revealing a diverse coordination behavior depending on the counter ion. Spectroscopic (UV-VIS and emission spectroscopy) and theoretical techniques (density functional theory and time dependent DFT calculations) have been employed to explore the photophysical properties of the complexes.

010405 organic chemistryChemistryLigandchemistry.chemical_elementZincNuclear magnetic resonance spectroscopy010402 general chemistryPhotochemistry01 natural sciences0104 chemical sciencesInorganic ChemistryCrystalCrystallographychemistry.chemical_compoundDiamineDensity functional theoryLuminescenceSingle crystalEuropean Journal of Inorganic Chemistry
researchProduct

Spin Crossover and Long-Lived Excited States in a Reduced Molecular Ruby.

2020

Abstract The chromium(III) complex [CrIII(ddpd)2]3+ (molecular ruby; ddpd=N,N′‐dimethyl‐N,N′‐dipyridine‐2‐yl‐pyridine‐2,6‐diamine) is reduced to the genuine chromium(II) complex [CrII(ddpd)2]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T 1/2 around room temperature. The low‐spin and high‐spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single‐crystal XRD). Excitation of [CrII(ddpd)2]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This…

step-scan IR spectroscopychemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesCatalysislaw.inventionChromiumSpin crossoverlawSpin CrossoverElectron paramagnetic resonanceexcited states010405 organic chemistryChemistryCommunicationOrganic ChemistryGeneral ChemistryCommunications0104 chemical sciencesMicrosecondExcited stateElectron configurationchromiummagnetic propertiesExcitationChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application

2020

Abstract Drained organic soils are large sources of anthropogenic greenhouse gases (GHG) in many European and Asian countries. Therefore, these soils urgently need to be considered and adequately accounted for when attempting to decrease emissions from the Agriculture and Land Use, Land Use Change and Forestry (LULUCF) sectors. Here, we describe the methodology, data and results of the German approach for measurement, reporting and verification (MRV) of anthropogenic GHG emissions from drained organic soils and outline ways forward towards tracking drainage and rewetting. The methodology was developed for and is currently applied in the German GHG inventory under the United Nations Framewor…

0106 biological sciencesEcologyLand useSoil organic matterEnvironmental engineeringGeneral Decision Sciences010501 environmental sciences010603 evolutionary biology01 natural sciencesUnited Nations Framework Convention on Climate ChangeGreenhouse gasDissolved organic carbonEnvironmental scienceLand use land-use change and forestryKyoto ProtocolDrainageEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct

Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+

2021

Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(…

Nephelauxetic effectPhotoluminescenceQuenching (fluorescence)ChemistryQuantum yieldGeneral ChemistryPhotochemistryBiochemistryCatalysisColloid and Surface ChemistryAtomic orbitalExcited stateLuminescenceGround stateJournal of the American Chemical Society
researchProduct

Alkali Blues: Blue‐Emissive Alkali Metal Pyrrolates

2019

2-Iminopyrroles [HtBu L, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBu L), aggregate to dimers, [M(tBu L)(NCR)]2 (M=Li, R=CH3 , CH(CH3 )CNH2 ), or polymers, [M(tBu L)]n (M=Na, K). In solution (solv=CH3 CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBu L)(solv)m with N,N'-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBu L) chromophore possesses a low-energy intra…

010405 organic chemistryOrganic ChemistryGeneral ChemistryChromophore010402 general chemistryAlkali metal01 natural sciencesMedicinal chemistryCatalysis0104 chemical scienceschemistry.chemical_compoundMonomerDeprotonationchemistryIntramolecular forceExcited stateMoietyAmine gas treatingChemistry – A European Journal
researchProduct

Unexpected C–C bond formation with a ferrocenyl Fischer carbene complex

2020

Inorganic ChemistryC c couplingchemistry.chemical_compoundChromium540 Chemistry and allied sciencesFerrocenechemistryTransition metal carbene complex540 Chemiechemistry.chemical_elementBond formationMedicinal chemistry
researchProduct

Oligonuclear Ferrocene Amides: Mixed‐Valent Peptides and Potential Redox‐Switchable Foldamers

2010

Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, param…

Models MolecularMagnetic Resonance SpectroscopyMolecular StructureMetallocenesHydrogen bondOrganic ChemistryInorganic chemistryMolecular ConformationGeneral ChemistryNuclear magnetic resonance spectroscopyIntervalence charge transferAmidesCatalysischemistry.chemical_compoundCrystallographyFerrocenechemistryIntramolecular forceAmideMoleculeFerrous CompoundsPeptidesOxidation-ReductionProtein secondary structureChemistry – A European Journal
researchProduct

Intramolecular electron transfer between molybdenum and iron mimicking bacterial sulphite dehydrogenase

2014

Diferrocenyl/diferrocenium substituted dioxido molybdenum(VI) complexes [Fe2MoO2] 2(Fc)/[2(FC)]²⁺ mimic the catalytic active site including the redox subunits as well as the catalytic function of bacterial sulphite oxidases.

IronSulfite DehydrogenaseMolecular Conformationchemistry.chemical_elementBiocompatible MaterialsElectronsCrystallography X-RayPhotochemistryRedoxCatalysisCatalysisElectron TransportElectron transferCoordination ComplexesCatalytic DomainPolymer chemistryMaterials ChemistrySulfite dehydrogenaseFerrous CompoundsMolybdenumBacteriabiologyMetals and AlloysActive siteGeneral ChemistryElectron transport chainSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryMolybdenumIntramolecular forceCeramics and Compositesbiology.proteinOxidation-ReductionChemical Communications
researchProduct

A heteroleptic bis(tridentate)ruthenium(II) polypyridine complex with improved photophysical properties and integrated functionalizability.

2010

The synthesis and photophysical properties of a ruthenium(II) complex bearing an electron-accepting 2,2';6',2''-terpyridine ligand and an electron-donating N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) ligand are presented. The heteroleptic complex is easily prepared isomerically pure and features intense low-energy metal-to-ligand charge-transfer (MLCT) absorption bands and intense room temperature (3)MLCT emission with a long (3)MLCT lifetime. The favorable photophysical properties are due to the strong ligand field imposed by the ddpd ligand.

Inorganic ChemistryLigand field theoryPolypyridine complexchemistryLigandchemistry.chemical_elementPhysical and Theoretical ChemistryAbsorption (chemistry)PhotochemistryRutheniumInorganic chemistry
researchProduct

Luminescence and Light‐Driven Energy and Electron Transfer from an Exceptionally Long‐Lived Excited State of a Non‐Innocent Chromium(III) Complex

2019

Abstract Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, …

LuminescenceMaterials sciencePhotoredox chemistryQuantum yieldSustainable Chemistry010402 general chemistryPhotochemistryLaporte's rule01 natural sciencesCatalysischemistry.chemical_compoundBipyridineElectron transferPhotochemistry | Very Important PaperResearch Articles010405 organic chemistryLigandGeneral MedicineGeneral ChemistryChromophoreAzulene0104 chemical scienceschemistryExcited stateEarth-abundant metalsLuminescenceResearch ArticleAngewandte Chemie International Edition
researchProduct

How Hydrogen Bonds Affect Reactivity and Intervalence Charge Transfer in Ferrocenium‐Phenolate Radicals

2016

The ferrocenyl-phenol 2,4-di-tert-butyl-6-(ferrocenylcarbamoyl)phenol (H-1) forms intramolecular hydrogen bonds which are absent in its constitutional isomer 2,6-di-tert-butyl-4-(ferrocenylcarbamoyl)phenol (H-2). Their corresponding bases 1– and 2– show intra- and intermolecular NH···O hydrogen bonds, respectively. The phenolate 1– is reversibly oxidized to 1·, whereas 2– only undergoes a quasi-reversible oxidation to 2·, which suggests a higher reactivity. The radical pools of 1· and 2· formed by the oxidation/deprotonation of H-1 and H-2 have been probed by (rapid-freeze) electron paramagnetic resonance (EPR) spectroscopy and by spin-trapping techniques to elucidate the types of radicals …

Nitroxide mediated radical polymerization010405 organic chemistryChemistryHydrogen bondRadicalIntervalence charge transfer010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistry0104 chemical scienceslaw.inventionInorganic ChemistryDeprotonationlawValence isomerIntramolecular forceElectron paramagnetic resonanceEuropean Journal of Inorganic Chemistry
researchProduct

Effects of sequence, connectivity, and counter ions in new amide-linked Ru(tpy)2-Re(bpy) chromophores on redox chemistry and photophysics.

2013

New cationic metallo ligands L1-L3 based on bis(terpyridine) ruthenium(II) complexes decorated with differently substituted 2,2'-bipyridines attached via amide groups (5-NHCO-bpy, 4-CONH-bpy, 5-CONH-bpy) were prepared. Coordination of Re(I)Cl(CO)(3) fragments to the bpy unit gives the corresponding bimetallic Ru~Re complexes 1-3. Hydrogen bonds of the bridging amide groups to [PF(6)](-) counterions or to water molecules are observed both in the solid state and in solution. The impact of the amide orientation, the connecting site, and the coordination of counterions on redox and photophysical properties is explored. Both the metallo ligands L1-L3 and the bimetallic complexes 1-3 are emissive…

Models MolecularMolecular Conformationchemistry.chemical_elementPhotochemistryCrystallography X-RayRutheniumlaw.inventionInorganic Chemistrychemistry.chemical_compoundlawAmideOrganometallic CompoundsMoleculePhysical and Theoretical ChemistryElectron paramagnetic resonanceBimetallic stripIonsHydrogen bondLigandPhotochemical ProcessesAmidesRutheniumCrystallographyRheniumchemistryQuantum TheoryTerpyridineOxidation-ReductionInorganic chemistry
researchProduct

Front Cover: Redox‐Controlled Stabilization of an Open‐Shell Intermediate in a Bioinspired Enzyme Model (Eur. J. Inorg. Chem. 31/2018)

2018

Inorganic ChemistryFront coverChemical engineeringChemistryEnzyme modelOpen shellRedoxEuropean Journal of Inorganic Chemistry
researchProduct

Cover Feature: Triplet–Triplet Annihilation Upconversion in a MOF with Acceptor‐Filled Channels (Chem. Eur. J. 5/2020)

2019

ChemistryFeature (computer vision)Organic ChemistryMetal-organic frameworkCover (algebra)General ChemistryTriplet triplet annihilationHybrid materialAcceptorMolecular physicsCatalysisPhoton upconversionChemistry – A European Journal
researchProduct

Diferrocenyl tosyl hydrazone with an ultrastrong NHFe hydrogen bond as double click switch.

2014

The intramolecular NH⋯Fe hydrogen bond in diferrocenyl hydrazone 2 raises the barrier for intramolecular electron transfer in its mixed-valent cation 2+ and is only disrupted by double oxidation to 22+.

chemistry.chemical_classificationHydrogen bondMetals and AlloysHydrazoneGeneral ChemistryPhotochemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundElectron transferchemistryTosylIntramolecular forceMaterials ChemistryCeramics and CompositesChemical communications (Cambridge, England)
researchProduct

N-Cobaltocenium Amide as Reactive Nucleophilic Reagent for Donor–Acceptor Bimetallocenes

2017

Deprotonation of the aminocobaltocenium ion [Cc-NH2]+ ([H-1]+) generates the nucleophilic imine CcNH (1). Reaction of 1 with acid chlorides R–COCl (R = Ph, Fc, and Cc+) yields the reference amide [Ph-CO-NH-Cc]+ (2+) and the amide-linked hetero- and homobimetallocenes [Fc-CO-NH-Cc]+ (3+) and [Cc-CO-NH-Cc]2+ (42+), respectively. Cation–anion interactions of charged amides 2+–42+ in the solid state and in solution are probed by single crystal X-ray diffraction and NMR and IR spectroscopy. Intramolecular metal–metal interactions in donor–acceptor heterobimetallocene 3+ and in mixed-valent homobimetallocene 4+ (prepared electrochemically) are discussed within the Marcus–Hush framework aided by s…

010405 organic chemistryOrganic ChemistryImineInfrared spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographyDeprotonationchemistryNucleophileIntramolecular forceReagentAmideDensity functional theoryPhysical and Theoretical ChemistryOrganometallics
researchProduct

Protic Ferrocenyl Acyclic Diamino Carbene Gold(I) Complexes

2021

Inorganic Chemistrychemistry.chemical_compoundFerroceneChemistryMedicinal chemistryCarbeneEuropean Journal of Inorganic Chemistry
researchProduct

Understanding and exploiting long-lived near-infrared emission of a molecular ruby

2018

Coordination chemistry reviews 359, 102 - 111 (2018). doi:10.1016/j.ccr.2018.01.004

Ligand field theory010405 organic chemistryChemistryMetal ions in aqueous solutionNear-infrared spectroscopyRelaxation (NMR)chemistry.chemical_element010402 general chemistryPhotochemistry54001 natural sciences0104 chemical sciencesInorganic ChemistryChromiumExcited stateddc:540Materials ChemistryMoleculePhotosensitizerPhysical and Theoretical Chemistry
researchProduct

Polysubstituted ferrocenes as tunable redox mediators

2018

A series of four ferrocenyl ester compounds, 1-methoxycarbonyl- (1), 1,1’-bis(methoxycarbonyl)- (2), 1,1’,3-tris(methoxycarbonyl)- (3) and 1,1’,3,3’-tetrakis(methoxycarbonyl)ferrocene (4), has been studied with respect to their potential use as redox mediators. The impact of the number and position of ester groups present in 1–4 on the electrochemical potential E1/2 is correlated with the sum of Hammett constants. The 1/1+–4/4+ redox couples are chemically stable under the conditions of electrolysis as demonstrated by IR and UV–vis spectroelectrochemical methods. The energies of the C=O stretching vibrations of the ester moieties and the energies of the UV–vis absorptions of 1–4 and 1+–4+ c…

redox mediator010402 general chemistryElectrosynthesis01 natural sciencesMedicinal chemistryRedoxFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryRedox titrationparamagnetic NMR spectroscopylcsh:ScienceElectrochemical potential010405 organic chemistryChemistryChemical shiftOrganic Chemistryferrocenespectroelectrochemistrycyclic voltammetry0104 chemical sciencesChemistryFerroceneProton NMRlcsh:QCyclic voltammetryBeilstein Journal of Organic Chemistry
researchProduct

Synthesis and Structure of a Potassium Potassiochromate: A Bis-Chromium(II) Molecule Held Together by Near-Square-Planar Potassium−Ligand Bridges

2010

No Cr-Cr bonding is found in a new type of mixed-metal ate complex having two coordinatively unsaturated but sterically saturated bisamido-monoalkyl Cr(II) groups linked via an unusual near-square-planar-coordinated K atom in the moiety of the ate, while the cationic moiety is a separated iris-tmeda solvated second potassium atom.

Steric effectsLigandMetalationChemistryPotassiumOrganic ChemistryCationic polymerizationchemistry.chemical_elementAte complexPhotochemistryInorganic ChemistryCrystallographyMoietyMoleculePhysical and Theoretical ChemistryOrganometallics
researchProduct

αα- and αβ-Zinc-meso-A2B2-tetraarylporphyrins with large optical responses to triethylamine

2012

Synthesis and separation of αα- and αβ-meso-A(2)B(2)-zinc(II) tetraarylporphyrin atropisomers with A = mesityl and B = ortho-phenylethynyl-phenyl are reported. Both isomers exhibit large optical responses upon axial NEt(3) coordination which are visible to the human eye and could therefore be beneficial for the design of smart amine sensing materials. The larger spectral changes as compared to Zn(TPP) are attributed to pronounced distortions of the porphyrin π-system due to steric interactions of the coordinating amine with the porphyrin periphery. This effect as well as the coordination site of NEt(3) at the αα-isomer have been studied by NMR experiments and were rationalized by DFT calcul…

Inorganic ChemistrySteric effectsAtropisomerchemistry.chemical_compoundchemistrychemistry.chemical_elementAmine gas treatingZincSolubilityPhotochemistryTriethylaminePorphyrinSingle crystalDalton Trans.
researchProduct

Near-IR to Near-IR Upconversion Luminescence in Molecular Chromium Ytterbium Salts

2020

Abstract Upconversion photoluminescence in hetero‐oligonuclear metal complex architectures featuring organic ligands is an interesting but still rarely observed phenomenon, despite its great potential from a basic research and application perspective. In this context, a new photonic material consisting of molecular chromium(III) and ytterbium(III) complex ions was developed that exhibits excitation‐power density‐dependent cooperative sensitization of the chromium‐centered 2E/2T1 phosphorescence at approximately 775 nm after excitation of the ytterbium band 2F7/2→2F5/2 at approximately 980 nm in the solid state at ambient temperature. The upconversion process is insensitive to atmospheric ox…

YtterbiumPhotoluminescenceMaterials sciencechemistry.chemical_elementContext (language use)Crystal structure010402 general chemistryPhotochemistry01 natural sciencesCatalysisChromiumluminescenceResearch Articlesupconversionenergy transfer010405 organic chemistryytterbiumGeneral Chemistry540Photon upconversion0104 chemical scienceschemistrychromiumPhosphorescenceLuminescence500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete WissenschaftenResearch Article
researchProduct

Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Exp…

2013

The synergy of push-pull substitution and enlarged ligand bite angles has been used in functionalized heteroleptic bis(tridentate) polypyridine complexes of ruthenium(II) to shift the (1) MLCT absorption and the (3) MLCT emission to lower energy, enhance the emission quantum yield, and to prolong the (3) MLCT excited-state lifetime. In these complexes, that is, [Ru(ddpd)(EtOOC-tpy)][PF6 ]2 , [Ru(ddpd-NH2 )(EtOOC-tpy)][PF6 ]2 , [Ru(ddpd){(MeOOC)3 -tpy}][PF6 ]2 , and [Ru(ddpd-NH2 ){(EtOOC)3 -tpy}][PF6 ]2 the combination of the electron-accepting 2,2';6',2''-terpyridine (tpy) ligand equipped with one or three COOR substituents with the electron-donating N,N'-dimethyl-N,N'-dipyridin-2-ylpyridin…

Ligand field theoryAbsorption spectroscopyChemistryLigandOrganic Chemistrychemistry.chemical_elementQuantum yieldGeneral ChemistryBite anglePhotochemistryCatalysisRutheniumCrystallographychemistry.chemical_compoundExcited stateTerpyridineChemistry - A European Journal
researchProduct

Coordination of expanded terpyridine ligands to cobalt

2013

Abstract The tridentate expanded terpyridine-like ligand N,N′-dimethyl-N,N′-dipyridin-2-yl-pyridin-2,6-diamine (ddpd) and [Co(H2O)6](BF4)2 give the high-spin complex mer-[Co(ddpd)2](BF4)2 with a tetragonally compressed CoN6 coordination geometry according to X-ray diffraction and SQUID measurements. UV–Vis–NIR spectra indicate a large ligand field splitting close to the high-spin/low-spin crossover point. Oxidation of the CoII complex to CoIII is achieved with silver triflate. The self exchange between high-spin CoII and low-spin CoIII is slow on the NMR time scale.

Ligand field theoryChemistryMagnetismLigandInorganic chemistrychemistry.chemical_elementRedoxInorganic ChemistryCrystallographychemistry.chemical_compoundMaterials ChemistryPhysical and Theoretical ChemistryTerpyridineCobaltTrifluoromethanesulfonateCoordination geometryPolyhedron
researchProduct

Ferrocenyl-Labeled Sugar Amino Acids: Conformation and Properties

2012

Novel organometallic sugar amino acid conjugates 1–5 have been prepared by amide coupling of O-protected N-acetylmuramic acid and iso-muramic acid (2-[3-amino-2, 5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxypropanoic acid) with 1-aminoferrocene, 1-aminoferrocene-1′-carboxylic acid (H-Fca-OH), or 1, 1′-diaminoferrocene, respectively. The influence of the ferrocenyl moiety and presence of additional remote potential hydrogen atom acceptors and donors at the ferrocenyl core on the conformation and lipophilicity is investigated by TLC, IR, NMR, and CD spectroscopic methods augmented by density functional calculations. Furthermore, the redox potential of the ferrocene/ferrocenium couple is tuned by…

chemistry.chemical_classificationHydrogen bondOrganic ChemistryMedicinal chemistryRedoxAmino acidInorganic Chemistrychemistry.chemical_compoundFerrocenechemistryconformational analysis; hydrogen bonds; metallocenes; redox chemistry; sugar amino acidsAmideLipophilicityOrganic chemistryMoietyHydroxymethylPhysical and Theoretical Chemistry
researchProduct

Photophysics and photochemistry with Earth-abundant metals - fundamentals and concepts.

2020

Recent exciting developments in the area of mononuclear photoactive complexes with Earth-abundant metal ions (Cu, Zr, Fe, Cr) for potential eco-friendly applications in (phosphorescent) organic light emitting diodes, in imaging and sensing systems, in dye-sensitized solar cells and as photocatalysts are presented. Challenges, in particular the extension of excited state lifetimes, and recent conceptual breakthroughs in substituting precious and rare-Earth metal ions (e.g. Ru, Ir, Pt, Au, Eu) in these applications by abundant ions are outlined with selected examples. Relevant fundamentals of photophysics and photochemistry are discussed first, followed by conceptual and instructive case stud…

Materials scienceExcited stateMetal ions in aqueous solutionOLEDEarth abundantGeneral ChemistryPhosphorescencePhotochemistrySensing systemIonChemical Society reviews
researchProduct

Persistent radicals of trivalent tin and lead.

2008

In this report we present synthetic, crystallographic, and new electron paramagnetic resonance (EPR) spectroscopic work that shows that the synthetic route leading to the recently reported, first persistent plumbyl radical *PbEbt3 (Ebt = ethylbis(trimethylsilyl)silyl), that is, the oxidation of the related PbEbt3-anion, was easily extended to the synthesis of other persistent molecular mononuclear radicals of lead and tin. At first, various novel solvates of homoleptic potassium metallates KSnHyp3 (4a), KPbHyp3 (3a), KSnEbt3 (4b), KPbIbt3 (3c), and KSnIbt3 (4c) (Hyp = tris(trimethylsilyl)silyl, Ibt = isopropylbis(trimethylsilyl)silyl), as well as some heteroleptic metallates, such as [Li(OE…

TrisSilylationTrimethylsilylRadicalInorganic chemistrychemistry.chemical_elementMedicinal chemistrylaw.inventionInorganic Chemistrychemistry.chemical_compoundchemistrylawYield (chemistry)Physical and Theoretical ChemistryHomolepticTinElectron paramagnetic resonanceInorganic chemistry
researchProduct

Triplet–Triplet Annihilation Upconversion in a MOF with Acceptor‐Filled Channels

2019

Abstract Photon upconversion has enjoyed increased interest in the last years due to its high potential for solar‐energy harvesting and bioimaging. A challenge for triplet–triplet annihilation upconversion (TTA‐UC) processes is to realize these features in solid materials without undesired phase segregation and detrimental dye aggregation. To achieve this, we combine a palladium porphyrin sensitizer and a 9,10‐diphenylanthracene annihilator within a crystalline mesoporous metal–organic framework using an inverted design. In this modular TTA system, the framework walls constitute the fixed sensitizer, while caprylic acid coats the channels providing a solventlike environment for the mobile a…

LuminescenceQuantum yieldengineering.material010402 general chemistryPhotochemistryporphyrins01 natural sciencesCatalysismetal–organic frameworksCoatinghybrid materialsupconversion010405 organic chemistryChemistryCommunicationOrganic ChemistryGeneral ChemistryAcceptorFluorescencePhoton upconversionCommunicationstriplet–triplet annihilation0104 chemical sciencesengineeringMetal-organic frameworkLuminescenceHybrid materialChemistry (Weinheim an Der Bergstrasse, Germany)
researchProduct

Cover Feature: Green‐Light Activation of Push–Pull Ruthenium(II) Complexes (Chem. Eur. J. 30/2020)

2020

chemistryFeature (computer vision)Organic ChemistryPhotocatalysischemistry.chemical_elementCover (algebra)General ChemistryGreen-lightLuminescencePhotochemistryCatalysisPush pullRutheniumChemistry – A European Journal
researchProduct

Molybdenum Complex with Bulky Chelates as a Functional Model for Molybdenum Oxidases

2014

The novel bulky Schiff base chelate ligand [(4,5-diisopropyl-1H-pyrrole-2-yl)methylene]-4-(tert-butyl)aniline ((iPr2)HL) bearing two isopropyl groups close to the pyrrole nitrogen atom reacts with MoCl2(dme)O2 (dme = 1,2-dimethoxyethane) to give the sterically congested complex Mo(VI)((iPr2)L)2O2 ((iPr2)1; OC-6-4-4 configuration). In spite of the increased steric shielding of the [MoO2] unit (iPr2)1 is active in oxygen-atom transfer to PMe3 and PPh3 to give OPMe3 and OPPh3, respectively. Because of the increased steric bulk of the chelate ligand, formation of dinuclear complexes [Mo(V)((iPr2)L)2O]2(μ-O) ((iPr2)3) by comportionation is effectively prevented in contrast to the highly favored …

Models MolecularMolybdenumSchiff baseMolecular StructureLigandchemistry.chemical_elementLigandsInorganic Chemistrychemistry.chemical_compoundAnilinechemistryMolybdenumPolymer chemistryOrganic chemistryChelationPhysical and Theoretical ChemistryMethyleneCrystallizationOxidoreductasesIsopropylPyrroleInorganic Chemistry
researchProduct

[Cr(ddpd) 2 ] 3+ : A Molecular, Water‐Soluble, Highly NIR‐Emissive Ruby Analogue

2015

Bright, long-lived emission from first-row transition-metal complexes is very challenging to achieve. Herein, we present a new strategy relying on the rational tuning of energy levels. With the aid of the large N-Cr-N bite angle of the tridentate ligand ddpd (N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) and its strong σ-donating capabilities, a very large ligand-field splitting could be introduced in the chromium(III) complex [Cr(ddpd)2](3+), that shifts the deactivating and photoreactive (4)T2 state well above the emitting (2)E state. Prevention of back-intersystem crossing from the (2)E to the (4)T2 state enables exceptionally high near-infrared phosphorescence quantum yields a…

ChromiumSubstitution reactionSpectroscopy Near-InfraredWaterchemistry.chemical_elementGeneral ChemistryBite anglePhotochemistryCatalysisMetalFluorescence intensityChromiumWater solubleIntersystem crossingSolubilityX-Ray DiffractionchemistryCoordination Complexesvisual_artvisual_art.visual_art_mediumPhosphorescenceAngewandte Chemie International Edition
researchProduct

NIR‐NIR‐Aufkonvertierung in molekularen Chrom‐Ytterbium‐Salzen

2020

Photonen-Aufkonvertierung in hetero-oligonuklearen, Metallkomplex-Architekturen mit organischen Liganden ist ein interessantes, aber bisher selten beobachtetes Phanomen, trotz des grosen Potentials sowohl aus Sicht der Grundlagenforschung als auch aus der Anwendungsperspektive. Nun wurde ein neues photonisches Material aus molekularen Chrom(III)- und Ytterbium(III)-Komplexionen entwickelt. Dieses zeigt im Festkorper bei Raumtemperatur abhangig von der Anregungsleistungsdichte nach Anregung des 2F7/2! 2F5/2-3berganges des Ytterbiums bei ca. 980 nm eine kooperative Sensibilisierung der Chrom(III)-zentrierten 2E/2T1-Phosphoreszenz bei ca. 775 nm. Der Aufkonvertierungsprozess ist unempfindlich …

Ytterbiumchemistry010405 organic chemistrychemistry.chemical_elementGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesNuclear chemistryAngewandte Chemie
researchProduct

Eine stabile einkernige Blei(III)-Verbindung – ein bleizentriertes Radikal

2007

ChemistryGeneral MedicineAngewandte Chemie
researchProduct

CCDC 1426094: Experimental Crystal Structure Determination

2016

Related Article: Philipp Veit, Ephraim Prantl, Christoph Förster, Katja Heinze|2016|Organometallics|35|249|doi:10.1021/acs.organomet.5b00963

Space GroupCrystallography(mu-N'-(cyclopenta-13-dien-1-yl(cyclopenta-24-dien-1-ylidene)methyl)-4-methylbenzenesulfonohydrazide)-bis(eta5-cyclopentadienyl)-di-rutheniumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1962440: Experimental Crystal Structure Determination

2020

Related Article: Philipp Veit, Sebastian Seibert, Christoph Förster, Katja Heinze|2020|Z.Anorg.Allg.Chem.|646|940|doi:10.1002/zaac.201900350

Space GroupCrystallographyCrystal SystemN2-diferrocenylacetamideCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 930312: Experimental Crystal Structure Determination

2013

Related Article: Aaron Breivogel, Michael Meister, Christoph Förster, Frédéric Laquai, Katja Heinze|2013|Chem.-Eur.J.|19|13745|doi:10.1002/chem.201302231

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N2N6-Dimethyl-N2N6-bis(pyridin-2-yl)pyridine-246-triamine)-(ethyl 22':6'2''-terpyridine-4'-carboxylate)-ruthenium(ii) bis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1475564: Experimental Crystal Structure Determination

2016

Related Article: Torben Kienz, Christoph Förster, and Katja Heinze|2016|Organometallics|35|3681|doi:10.1021/acs.organomet.6b00619

Space GroupCrystallographyCrystal System3-(ferrocen-1-yl)-5-((ferrocen-1-yl)(1-((ferrocen-1-yl)iminio)ethyl)amino)-2-methyl-45-dihydro-13-thiazol-3-ium bis(hexafluoro-antimony) dichloromethane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 965850: Experimental Crystal Structure Determination

2015

Related Article: Jana Leppin, Christoph Förster, Katja Heinze|2014|Inorg.Chem.|53|12416|doi:10.1021/ic501751p

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(5-(((4-t-butylphenyl)imino)methyl)-23-diisopropyl-1H-pyrrol-1-yl)-dioxo-molybdenum(vi)Experimental 3D Coordinates
researchProduct

CCDC 1042437: Experimental Crystal Structure Determination

2015

Related Article: Christoph Förster, Tatiana E. Gorelik, Ute Kolb, Vadim Ksenofontov, Katja Heinze|2015|Eur.J.Inorg.Chem.||920|doi:10.1002/ejic.201403200

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(NN'-dimethyl-NN'-bis(pyridin-2-yl)pyridine-26-diamine)-cobalt(ii) ditetrafluoroborateExperimental 3D Coordinates
researchProduct

CCDC 965852: Experimental Crystal Structure Determination

2015

Related Article: Jana Leppin, Christoph Förster, Katja Heinze|2014|Inorg.Chem.|53|12416|doi:10.1021/ic501751p

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters45-diisopropyl-1H-pyrrole-2-carbaldehydeExperimental 3D Coordinates
researchProduct

CCDC 1555799: Experimental Crystal Structure Determination

2017

Related Article: Sven Otto, Johannes Moll, Christoph Förster, Daniel Geißler, Cui Wang, Ute Resch-Genger, Katja Heinze|2017|Eur.J.Inorg.Chem.||5033|doi:10.1002/ejic.201700948

Space GroupCrystallographyCrystal SystemCrystal Structurebis(N2N6-dimethyl-N2N6-di(pyridin-2-yl)pyridine-26-diamine)-zinc(ii) bis(tetrafluoroborate) acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2107164: Experimental Crystal Structure Determination

2021

Related Article: Sven D. Waniek, Christoph Förster, Katja Heinze|2021|Eur.J.Inorg.Chem.|2022||doi:10.1002/ejic.202100905

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterschloro-([bis(propan-2-yl)amino]((ferrocenyl)amino)methylidene)-gold(i)Experimental 3D Coordinates
researchProduct

CCDC 1441949: Experimental Crystal Structure Determination

2016

Related Article: Andreas Neidlinger, Christoph Förster, Katja Heinze|2016|Eur.J.Org.Chem.|2016|4852|doi:10.1002/ejoc.201600774

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-bis((t-butoxycarbonyl)amino)ferroceneExperimental 3D Coordinates
researchProduct

CCDC 895382: Experimental Crystal Structure Determination

2016

Related Article: Philip Heier, Christoph Förster, Dieter Schollmeyer, Nicolas Boscher, Patrick Choquet, Katja Heinze|2013|Dalton Trans.|42|906|doi:10.1039/C2DT31943H

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(515-dimesityl-1020-bis(2-(phenylethynyl)phenyl)porphyrinato)-zinc(ii) dichloromethane solvate
researchProduct

CCDC 1855069: Experimental Crystal Structure Determination

2019

Related Article: Oliver Back, Christoph Förster, Thomas Basché, Katja Heinze|2019|Chem.-Eur.J.|25|6542|doi:10.1002/chem.201806103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-2-{[(4-t-butylphenyl)imino]methyl}pyrrol-1-yl)-bis(acetonitrile)-di-lithiumExperimental 3D Coordinates
researchProduct

CCDC 1426154: Experimental Crystal Structure Determination

2016

Related Article: Andreas Neidlinger, Christoph Förster and Katja Heinze|2016|Eur.J.Inorg.Chem.||1274|doi:10.1002/ejic.201501471

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-((35-di-t-butyl-2-hydroxybenzoyl)nitrilo)ferroceneExperimental 3D Coordinates
researchProduct

CCDC 978126: Experimental Crystal Structure Determination

2014

Related Article: Torben Kienz, Christoph Förster, and Katja Heinze|2014|Organometallics|33|4803|doi:10.1021/om500052k

Space GroupCrystallographyCrystal System1-(Ethanethioylamino)ferroceneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1035257: Experimental Crystal Structure Determination

2015

Related Article: Christoph Förster and Katja Heinze|2015|Z.Anorg.Allg.Chem.|641|517|doi:10.1002/zaac.201400548

bis(mu-ferrocenyl)-tetrakis(tetrahydrofuran)-di-lithiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 956709: Experimental Crystal Structure Determination

2014

Related Article: Kristina Hüttinger, Christoph Förster, Katja Heinze|2014|Chem.Commun.|50|4285|doi:10.1039/C3CC46919K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-(ferrocen-1-yl)-1-(1H-pyrrol-2-yl)methanimineExperimental 3D Coordinates
researchProduct

CCDC 1426095: Experimental Crystal Structure Determination

2016

Related Article: Philipp Veit, Ephraim Prantl, Christoph Förster, Katja Heinze|2016|Organometallics|35|249|doi:10.1021/acs.organomet.5b00963

Space GroupCrystallographyCrystal SystemCrystal Structure(mu-N'-(cyclopenta-13-dien-1-yl(cyclopenta-24-dien-1-ylidene)methyl)-4-methylbenzenesulfonohydrazide)-bis(eta5-cyclopentadienyl)-iron-rutheniumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1832900: Experimental Crystal Structure Determination

2018

Related Article: Sven Otto, Christoph Förster, Cui Wang, Ute Resch‐Genger, Katja Heinze|2018|Chem.-Eur.J.|24|12555|doi:10.1002/chem.201802797

Space GroupCrystallographyCrystal Systembis(N2N6-di(pyridin-2-yl)pyridine-26-diamine)-chromium triperchlorate acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1581720: Experimental Crystal Structure Determination

2017

Related Article: Maximilian Lauck, Christoph Förster, Katja Heinze|2017|Organometallics|36|4968|doi:10.1021/acs.organomet.7b00790

Space GroupCrystallographyCrystal SystemCrystal Structure1-(ferrocenylamido)-cobaltocene hexafluorophosphate benzene solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1581721: Experimental Crystal Structure Determination

2017

Related Article: Maximilian Lauck, Christoph Förster, Katja Heinze|2017|Organometallics|36|4968|doi:10.1021/acs.organomet.7b00790

Space GroupCrystallographyCrystal SystemCrystal Structure1-benzamido-cobaltocene hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1958562: Experimental Crystal Structure Determination

2020

Related Article: Matthias Dorn, Jens Kalmbach, Pit Boden, Ayla Päpcke, Sandra Gómez, Christoph Förster, Felix Kuczelinis, Luca M. Carrella, Laura A. Büldt, Nicolas H. Bings, Eva Rentschler, Stefan Lochbrunner, Leticia González, Markus Gerhards, Michael Seitz, Katja Heinze|2020|J.Am.Chem.Soc.|142|7947|doi:10.1021/jacs.0c02122

Space GroupCrystallographymer-bis(N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine)-vanadium(iii) tris(hexafluorophosphate) acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 934080: Experimental Crystal Structure Determination

2013

Related Article: Anica Wünsche von Leupoldt, Christoph Förster, Tobias J. Fiedler, Nicolas H. Bings, Katja Heinze|2013|Eur.J.Inorg.Chem.||6079|doi:10.1002/ejic.201301156

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN'N''-(nitrilotriethane-21-diyl)tris(35-dimethylanilinium) tetrachloro-cobalt(ii) chlorideExperimental 3D Coordinates
researchProduct

CCDC 952600: Experimental Crystal Structure Determination

2014

Related Article: Jana Leppin, Christoph Förster, and Katja Heinze|2014|Inorg.Chem.|53|1039|doi:10.1021/ic4025102

Space GroupCrystallography(t-butyl isocyanide)-bis(N-(4-t-butylphenyl)-1-(1H-pyrrol-2-yl)methaniminato)-oxo-molybdenum tetrahydrofuran solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1855071: Experimental Crystal Structure Determination

2019

Related Article: Oliver Back, Christoph Förster, Thomas Basché, Katja Heinze|2019|Chem.-Eur.J.|25|6542|doi:10.1002/chem.201806103

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-2-{[(4-t-butylphenyl)imino]methyl}pyrrol-1-ide)-bis(3-aminobut-2-enenitrile)-di-lithiumExperimental 3D Coordinates
researchProduct

CCDC 965851: Experimental Crystal Structure Determination

2015

Related Article: Jana Leppin, Christoph Förster, Katja Heinze|2014|Inorg.Chem.|53|12416|doi:10.1021/ic501751p

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(mu2-oxido)-tetrakis(2-(((4-t-butylphenyl)imino)methyl)-1H-pyrrol-1-yl)-dioxo-di-molybdenum
researchProduct

CCDC 1016554: Experimental Crystal Structure Determination

2014

Related Article: Andreas K. C. Mengel, Christoph Förster, Aaron Breivogel, Katharina Mack, Julian R. Ochsmann, Frédéric Laquai, Vadim Ksenofontov, Katja Heinze|2015|Chem.-Eur.J.|21|704|doi:10.1002/chem.201404955

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis((pyridine-26-diyl)bis((pyridin-2-yl)methanone))-iron bis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 959158: Experimental Crystal Structure Determination

2013

Related Article: Anica Wünsche von Leupoldt, Christoph Förster, Tobias J. Fiedler, Nicolas H. Bings, Katja Heinze|2013|Eur.J.Inorg.Chem.||6079|doi:10.1002/ejic.201301156

Space GroupCrystallographyCrystal SystemCrystal Structure(N'-(35-dimethylphenyl)-NN-bis(2-((35-dimethylphenyl)amino)ethyl)ethane-12-diaminato)-(nitrido)-molybdenum(vi)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1475563: Experimental Crystal Structure Determination

2016

Related Article: Torben Kienz, Christoph Förster, and Katja Heinze|2016|Organometallics|35|3681|doi:10.1021/acs.organomet.6b00619

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-N-(ferrocen-1-yl)ethanethioamide)-tetrakis(N-(ferrocen-1-yl)ethanethioamide)-di-copper bis(tetrafluoroborate) dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1829268: Experimental Crystal Structure Determination

2018

Related Article: Matthias Dorn, Katharina Mack, Luca M. Carrella, Eva Rentschler, Christoph Förster, Katja Heinze|2018|Z.Anorg.Allg.Chem.|644|706|doi:10.1002/zaac.201800101

Space GroupCrystallographyCrystal Systembis[N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine]-nickel(ii) bis(tetrafluoroborate) acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 885078: Experimental Crystal Structure Determination

2013

Related Article: Jan Dietrich, Ute Thorenz, Christoph Förster, and Katja Heinze|2013|Inorg.Chem.|52|1248|doi:10.1021/ic301632y

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N-(22':6'2''-Terpyridin-4'-yl)-22'-bipyridine-5-carboxamide)-(ethyl 22':6'2''-terpyridine-4'-carboxylate)-ruthenium(ii) bis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 984218: Experimental Crystal Structure Determination

2015

Related Article: Jana Leppin, Christoph Förster, Katja Heinze|2014|Inorg.Chem.|53|12416|doi:10.1021/ic501751p

Space GroupCrystallographyCrystal Systembis(mu2-Oxo)-bis(N-(4-t-butylphenyl)-1-(45-di-isopropyl-1H-pyrrol-2-yl)methanimine)-dioxo-di-molybdenum tetrahydrofuran solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1526745: Experimental Crystal Structure Determination

2017

Related Article: Andreas K. C. Mengel, Christian Bissinger, Matthias Dorn, Oliver Back, Christoph Förster, Katja Heinze|2017|Chem.-Eur.J.|23|7920|doi:10.1002/chem.201700959

bis(NN'-dihexyl-NN'-bis(pyridin-2-yl)pyridine-26-diamine)-iron bis(hexafluorophosphate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1494856: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-ethyl-3-ferrocenylureaExperimental 3D Coordinates
researchProduct

CCDC 2107165: Experimental Crystal Structure Determination

2021

Related Article: Sven D. Waniek, Christoph Förster, Katja Heinze|2021|Eur.J.Inorg.Chem.|2022||doi:10.1002/ejic.202100905

Space GroupCrystallographyCrystal Systemchloro-([diethylamino]((ferrocenyl)amino)methylidene)-gold(i) tetrahydrofuran solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 956710: Experimental Crystal Structure Determination

2014

Related Article: Kristina Hüttinger, Christoph Förster, Katja Heinze|2014|Chem.Commun.|50|4285|doi:10.1039/C3CC46919K

Space GroupCrystallographybis(2-(Ferrocenyliminomethyl)pyrrolyl)-dioxo-molybdenum toluene solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1522073: Experimental Crystal Structure Determination

2017

Related Article: Maximilian Lauck, Christoph Förster, Dominik Gehrig, Katja Heinze|2017|J.Organomet.Chem.|847|33|doi:10.1016/j.jorganchem.2017.02.026

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-methyl 4-(15-{4-[(cobaltocenium-1-carbonyl)amino]phenyl}-1020-diphenylporphyrinato-5-yl)benzoate)-zinc hexafluorophosphate unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 930313: Experimental Crystal Structure Determination

2013

Related Article: Aaron Breivogel, Michael Meister, Christoph Förster, Frédéric Laquai, Katja Heinze|2013|Chem.-Eur.J.|19|13745|doi:10.1002/chem.201302231

Space GroupCrystallographyCrystal System(NN'-Dimethyl-NN'-di(pyridin-2-yl-kappaN)pyridine-26-diamine)-(trimethyl 22':6'2''-terpyridine-44'4''-tricarboxylate)-ruthenium(ii) bis(hexafluorophosphate acetonitrile diethyl ether solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1958093: Experimental Crystal Structure Determination

2020

Related Article: Patrick B. Becker, Christoph Förster, Luca M. Carrella, Piet Boden, David Hunger, Joris van Slageren, Markus Gerhards, Eva Rentschler, Katja Heinze|2020|Chem.-Eur.J.|26|7199|doi:10.1002/chem.202001237

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine)-chromium bis(tetrafluoroborate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1494853: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallography1-ferrocenyl-3-phenylureaCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1494855: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-ferrocenyl-3-methylureaExperimental 3D Coordinates
researchProduct

CCDC 1843133: Experimental Crystal Structure Determination

2018

Related Article: Christoph Förster, Patrick M. Becker, Katja Heinze|2018|Z.Anorg.Allg.Chem.|644|1057|doi:10.1002/zaac.201800269

Space GroupCrystallographybis(ferrocenyl(trimethylsilyl)amido)-tin(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1494851: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal System13-diferrocenylureaCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1855070: Experimental Crystal Structure Determination

2019

Related Article: Oliver Back, Christoph Förster, Thomas Basché, Katja Heinze|2019|Chem.-Eur.J.|25|6542|doi:10.1002/chem.201806103

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatessodium 2-{[(4-t-butylphenyl)imino]methyl}pyrrol-1-ide
researchProduct

CCDC 1538078: Experimental Crystal Structure Determination

2018

Related Article: Kristina Hanauer, Christoph Förster, and Katja Heinze|2018|Eur.J.Inorg.Chem.||3537|doi:10.1002/ejic.201800570

Space GroupCrystallographyCrystal SystemCrystal Structurebis(2-((ferrocenylimino)methyl)-1H-pyrrol-1-yl)-trimethylphosphine-oxo-molybdenumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1962439: Experimental Crystal Structure Determination

2020

Related Article: Philipp Veit, Sebastian Seibert, Christoph Förster, Katja Heinze|2020|Z.Anorg.Allg.Chem.|646|940|doi:10.1002/zaac.201900350

4-ethoxy-234-triferrocenylcyclobut-2-en-1-oneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1494858: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-(antrhacenyl)-3-ferrocenylthiourea dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 2003421: Experimental Crystal Structure Determination

2020

Related Article: Jens Kalmbach, Cui Wang, Yi You, Christoph Förster, Hartmut Schubert, Katja Heinze, Ute Resch-Genger, Michael Seitz|2020|Angew.Chem.,Int.Ed.|59|18804|doi:10.1002/anie.202007200

Space GroupCrystallographyCrystal SystemCrystal Structurebis(N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine)-chromium tris(pyridine-26-dicarboxylato)-lutetium methanol unknown solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1016552: Experimental Crystal Structure Determination

2014

Related Article: Andreas K. C. Mengel, Christoph Förster, Aaron Breivogel, Katharina Mack, Julian R. Ochsmann, Frédéric Laquai, Vadim Ksenofontov, Katja Heinze|2015|Chem.-Eur.J.|21|704|doi:10.1002/chem.201404955

Space GroupCrystallographyCrystal SystemCrystal Structurebis(NN'-dimethyl-NN'-di(pyridin-2-yl)pyridine-26-diamine)-iron bis(hexafluorophosphate) acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 895383: Experimental Crystal Structure Determination

2016

Related Article: Philip Heier, Christoph Förster, Dieter Schollmeyer, Nicolas Boscher, Patrick Choquet, Katja Heinze|2013|Dalton Trans.|42|906|doi:10.1039/C2DT31943H

Space GroupCrystallographyCrystal System(515-dimesityl-1020-bis(2-(phenylethynyl)phenyl)porphyrinato)-zincCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 930311: Experimental Crystal Structure Determination

2013

Related Article: Aaron Breivogel, Michael Meister, Christoph Förster, Frédéric Laquai, Katja Heinze|2013|Chem.-Eur.J.|19|13745|doi:10.1002/chem.201302231

2-(26-Dichloropyridin-4-yl)-1H-isoindole-13(2H)-dioneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2003420: Experimental Crystal Structure Determination

2020

Related Article: Jens Kalmbach, Cui Wang, Yi You, Christoph Förster, Hartmut Schubert, Katja Heinze, Ute Resch-Genger, Michael Seitz|2020|Angew.Chem.,Int.Ed.|59|18804|doi:10.1002/anie.202007200

bis(N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine)-chromium tris(pyridine-26-dicarboxylato)-ytterbium methanol solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1484852: Experimental Crystal Structure Determination

2016

Related Article: Torben Kienz, Christoph Förster, and Katja Heinze|2016|Organometallics|35|3681|doi:10.1021/acs.organomet.6b00619

Space GroupCrystallographyhexakis(mu-1-(ferrocenylimino)ethanethiolato)-hexa-silverCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1855068: Experimental Crystal Structure Determination

2019

Related Article: Oliver Back, Christoph Förster, Thomas Basché, Katja Heinze|2019|Chem.-Eur.J.|25|6542|doi:10.1002/chem.201806103

Space GroupCrystallographyCrystal Systempotassium 2-{[(4-t-butylphenyl)imino]methyl}pyrrol-1-ideCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 930310: Experimental Crystal Structure Determination

2013

Related Article: Aaron Breivogel, Michael Meister, Christoph Förster, Frédéric Laquai, Katja Heinze|2013|Chem.-Eur.J.|19|13745|doi:10.1002/chem.201302231

Space GroupCrystallographyCrystal SystemCrystal Structure2-(26-Dibromopyridin-4-yl)-1H-isoindole-13(2H)-dioneCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1494852: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN'-bis(ferrocenium)urea bis(hexafluoroantimonate)Experimental 3D Coordinates
researchProduct

CCDC 1031559: Experimental Crystal Structure Determination

2014

Related Article: Christoph Förster, Philipp Veit, Vadim Ksenofontov, Katja Heinze|2015|Chem.Commun.|51|1514|doi:10.1039/C4CC08868A

Space GroupCrystallographyN'-(bis(Ferrocenyl)methylidene)-4-methylbenzenesulfonohydrazideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1458703: Experimental Crystal Structure Determination

2016

Related Article: Oliver Back, Jana Leppin, Christoph Förster, and Katja Heinze|2016|Inorg.Chem.|55|9653|doi:10.1021/acs.inorgchem.6b01400

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(N-(4-t-butylphenyl)-1-(1H-pyrrol-2-yl)methaniminato)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1494857: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal Structure13-diferrocenylthioureaCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1526744: Experimental Crystal Structure Determination

2017

Related Article: Andreas K. C. Mengel, Christian Bissinger, Matthias Dorn, Oliver Back, Christoph Förster, Katja Heinze|2017|Chem.-Eur.J.|23|7920|doi:10.1002/chem.201700959

Space GroupCrystallography(NN'-bis(pyridin-2-yl)pyridine-26-diamine)-(pyridine-26-diylbis(pyridin-2-ylmethanone))-iron bis(hexafluorophosphate) hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1520924: Experimental Crystal Structure Determination

2017

Related Article: Sebastian Preiß, Christoph Förster, Sven Otto, Matthias Bauer, Patrick Müller, Dariush Hinderberger, Haleh Hashemi Haeri, Luca Carrella, Katja Heinze|2017|Nature Chemistry|9|1249|doi:10.1038/nchem.2836

Space GroupCrystallography(5101520-tetraphenylporphyrinato)-gold(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1016553: Experimental Crystal Structure Determination

2014

Related Article: Andreas K. C. Mengel, Christoph Förster, Aaron Breivogel, Katharina Mack, Julian R. Ochsmann, Frédéric Laquai, Vadim Ksenofontov, Katja Heinze|2015|Chem.-Eur.J.|21|704|doi:10.1002/chem.201404955

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NN'-dimethyl-NN'-di(pyridin-2-yl)pyridine-26-diamine)-((pyridine-26-diyl)bis((pyridin-2-yl)methanone))-iron bis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1494854: Experimental Crystal Structure Determination

2017

Related Article: Kristina Hanauer, Minh Thu Pham, Christoph Förster, Katja Heinze|2017|Eur.J.Inorg.Chem.||433|doi:10.1002/ejic.201600918

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-ferrocenyl-3-(1-naphthyl)ureaExperimental 3D Coordinates
researchProduct

CCDC 1587133: Experimental Crystal Structure Determination

2018

Related Article: Sven Otto, Matthias Dorn, Christoph Förster, Matthias Bauer, Michael Seitz, Katja Heinze|2018|Coord.Chem.Rev.|359|102|doi:10.1016/j.ccr.2018.01.004

bis(mu-hydroxo)-tetrakis(22'-bipyridine)-di-chromium(iii) tetrakis(hexafluorophosphate) acetonitrile solvate hemihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1555798: Experimental Crystal Structure Determination

2017

Related Article: Sven Otto, Johannes Moll, Christoph Förster, Daniel Geißler, Cui Wang, Ute Resch-Genger, Katja Heinze|2017|Eur.J.Inorg.Chem.||5033|doi:10.1002/ejic.201700948

Space GroupCrystallographybis(N2N6-dimethyl-N2N6-di(pyridin-2-yl)pyridine-26-diamine)-zinc (N2N6-dimethyl-N2N6-di(pyridin-2-yl)pyridine-26-diamine)-dichloro-zinc tetrachloro-zinc acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1016551: Experimental Crystal Structure Determination

2014

Related Article: Andreas K. C. Mengel, Christoph Förster, Aaron Breivogel, Katharina Mack, Julian R. Ochsmann, Frédéric Laquai, Vadim Ksenofontov, Katja Heinze|2015|Chem.-Eur.J.|21|704|doi:10.1002/chem.201404955

bis(NN'-dimethyl-NN'-di(pyridin-2-yl)pyridine-26-diamine)-iron bis(tetrafluoroborate) acetonitrile solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1044691: Experimental Crystal Structure Determination

2016

Related Article: Oliver Back, Jana Leppin, Christoph Förster, and Katja Heinze|2016|Inorg.Chem.|55|9653|doi:10.1021/acs.inorgchem.6b01400

Space GroupCrystallographybis(mu-N-(4-t-butylphenyl)-1-(1H-pyrrol-2-yl)methaniminato)-di-copperCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 930315: Experimental Crystal Structure Determination

2013

Related Article: Anica Wünsche von Leupoldt, Christoph Förster, Tobias J. Fiedler, Nicolas H. Bings, Katja Heinze|2013|Eur.J.Inorg.Chem.||6079|doi:10.1002/ejic.201301156

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(2-((35-dimethylphenyl)amino)ethyl)amineExperimental 3D Coordinates
researchProduct

CCDC 1409670: Experimental Crystal Structure Determination

2015

Related Article: Philipp Veit, Christoph Förster, Sebastian Seibert and Katja Heinze|2015|Z.Anorg.Allg.Chem.|641|2083|doi:10.1002/zaac.201500562

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(2-ferrocenyl-1-(ferrocenylamino)ethylidene)-pentacarbonyl-chromiumExperimental 3D Coordinates
researchProduct

CCDC 885077: Experimental Crystal Structure Determination

2013

Related Article: Jan Dietrich, Ute Thorenz, Christoph Förster, and Katja Heinze|2013|Inorg.Chem.|52|1248|doi:10.1021/ic301632y

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N-(22':6'2''-Terpyridin-4'-yl)-22'-bipyridin-1-ium-4'-carboxamide)-(ethyl 22':6'2''-terpyridine-4'-carboxylate)-ruthenium(ii) tris(hexafluorophosphate) dihydrateExperimental 3D Coordinates
researchProduct

CCDC 1852838: Experimental Crystal Structure Determination

2020

Related Article: Johannnes Moll, Cui Wang, Ayla Päpcke, Christoph Förster, Ute Resch-Genger, Stefan Lochbrunner, Katja Heinze|2020|Chem.-Eur.J.|26|6820|doi:10.1002/chem.202000871

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine]-[{6-[methyl(pyridin-2-yl)amino]pyridin-2-yl}(pyridin-2-yl)methanone]-ruthenium bis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1538079: Experimental Crystal Structure Determination

2018

Related Article: Kristina Hanauer, Christoph Förster, and Katja Heinze|2018|Eur.J.Inorg.Chem.||3537|doi:10.1002/ejic.201800570

(mu-oxo)-tetrakis(2-((ferrocenylimino)methyl)-1H-pyrrol-1-yl)-dioxo-di-molybdenum tetrahydrofuran solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct