0000000000072976

AUTHOR

Sebastian B. Beil

showing 25 related works from this author

Aktive Anode auf Molybdänbasis für dehydrierende Kupplungen

2018

010405 organic chemistryChemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Thieme Chemistry Journals Awardees – Where Are They Now? Molybdenum(V)-Mediated Synthesis of Nonsymmetric Diaryl and Aryl Alkyl Chalcogenides

2017

Oxidative chalcogenation reaction using molybdenum(V) reagents provides fast access to a wide range of nonsymmetric aryl sulfides and selenides. The established protocol is tolerated by a variety of labile functions, protecting groups, and aromatic heterocycles. In particular, when labile moieties are present, the use of molybdenum(V) reagents provides superior yields compared to other oxidants.

inorganic chemicalschemistry.chemical_classificationmolybdenum pentachloridedisulfides010405 organic chemistryArylOrganic Chemistrychemistry.chemical_elementMolybdenum pentachloride010402 general chemistryoxidative coupling01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryMolybdenumReagentcross-couplingOrganic chemistryOxidative coupling of methaneC–S bond formationAlkylSynlett
researchProduct

About the selectivity and reactivity of active nickel electrodes in C–C coupling reactions

2020

Active anodes which are operating in highly stable protic media such as 1,1,1,3,3,3-hexafluoroisopropanol are rare. Nickel forms, within this unique solvent, a non-sacrificial active anode at constant current conditions, which is superior to the reported powerful molybdenum system. The reactivity for dehydrogenative coupling reactions of this novel active anode increases when the electrolyte is not stirred during electrolysis. Besides the aryl-aryl coupling, a dehydrogenative arylation reaction of benzylic nitriles was found while stirring the mixture providing quick access to synthetically useful building blocks.

ElectrolysisChemistryGeneral Chemical Engineeringchemistry.chemical_elementGeneral ChemistryElectrolyteCombinatorial chemistryCoupling reactionAnodelaw.inventionSolventNickellawReactivity (chemistry)SelectivityRSC Advances
researchProduct

Investigations on isomerization and rearrangement of polycyclic arenes under oxidative conditions – Anodic versus reagent-mediated reactions

2019

Abstract Electro-organic conversions at an active molybdenum anode enable the formation of fused arenes. High chemoselectivity was achieved under anodic conditions, and a reagent-induced selectivity was observed by comparison with results of MoCl5-mediated reactions. Polycyclic arenes like phenanthrenes, triphenylenes, chrysenes, or helicenes were selectively obtained in yields up to 87% and in some cases unusual rearrangements were crucial for the product formation.

General Chemical Engineeringchemistry.chemical_elementOxidative couplingRearrangement02 engineering and technologyOxidative phosphorylation010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesElectrolysis0104 chemical sciencesAnodeAnodechemistryMolybdenumReagentElectrochemistryPhenanthrenesChemoselectivityPolycyclic arenes0210 nano-technologySelectivityIsomerizationElectrochimica Acta
researchProduct

Mild, Fast, and Easy To Conduct MoCl5-Mediated Dehydrogenative Coupling Reactions in Flow

2018

A convenient and straightforward approach to performing oxidative coupling reactions in flow is presented. A collection of electron-rich benzene derivatives was subjected to this protocol, and the distinct utility of molybdenum pentachloride (MoCl5) is established. Using this unexplored protocol, biphenyls could be obtained in 21–91% isolated yield. This simple protocol opens a new chapter in reagent-mediated dehydrogenative coupling reactions, and yields are compared to classical approaches.

010405 organic chemistryChemistryOrganic ChemistryMolybdenum pentachloride010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryCoupling reaction0104 chemical sciencesFlow (mathematics)Yield (chemistry)Benzene derivativesOxidative coupling of methanePhysical and Theoretical ChemistryOrganic Letters
researchProduct

Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverständnisse

2021

ChemistryGeneral MedicineAngewandte Chemie
researchProduct

Electrochemical instability of highly fluorinated tetraphenyl borates and syntheses of their respective biphenyls

2018

Highly fluorinated tetraphenyl borate anions are of importance as weakly coordinating anions in metalorganic reactions. However, at high positive potentials their electrochemical stability in organic solvents is not sufficient. This was investigated by a comprehensive cyclic voltammetry study and can be used synthetically to generate highly fluorinated biphenyls.

010405 organic chemistryChemistryInorganic chemistryMetals and Alloyschemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesInstabilityCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and CompositesCyclic voltammetryBoronChemical Communications
researchProduct

Reproducibility in Electroorganic Synthesis—Myths and Misunderstandings

2021

Abstract The use of electric current as a traceless activator and reagent is experiencing a renaissance. This sustainable synthetic method is evolving into a hot topic in contemporary organic chemistry. Since researchers with various scientific backgrounds are entering this interdisciplinary field, different parameters and methods are reported to describe the experiments. The variation in the reported parameters can lead to problems with the reproducibility of the reported electroorganic syntheses. As an example, parameters such as current density or electrode distance are in some cases more significant than often anticipated. This Minireview provides guidelines on reporting electrosyntheti…

parameterscathodeReproducibilityanodesynthesisElectroorganic Chemistry010405 organic chemistryComputer scienceThe RenaissanceMinireviewsGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceselectrochemistryMinireviewBiochemical engineeringAngewandte Chemie International Edition
researchProduct

Mo-Based Oxidizers as Powerful Tools for the Synthesis of Thia- and Selenaheterocycles.

2019

A highly efficient synthetic protocol for the synthesis of thia- and selenaheterocycles has been developed. By employing a MoCl5 -mediated intramolecular dehydrogenative coupling reaction, a broad variety of structural motifs was isolated in yields up to 94 %. The electrophilic key transformation is tolerated by several labile moieties like halides and tertiary alkyl groups. Due to the use of disulfide or diselenide precursors, a high atom efficiency was achieved.

chemistry.chemical_classificationcyclization010405 organic chemistryChemistryoxidationOrganic ChemistryHalideGeneral Chemistry010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisCoupling reactionC−H activationsulfur heterocycles0104 chemical sciencesDiselenidemolybdenumAtom economyIntramolecular forceElectrophileStructural motifAlkylChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Facile access to foldable redox-active flavin-peptide conjugates

2021

A convenient approach for the synthesis of foldable redox-active flavin peptide conjugates was established. A model β-hairpin oligopeptide motif was utilized to demonstrate that azidolysine side-chains are readily functionalised with an alkyne-bearing flavine derivative. The folding equilibrium of the peptide backbone as well as the redox behaviour of the flavin moieties remains intact after the conjugation.

chemistry.chemical_classificationOligopeptideChemistryOrganic ChemistryPeptideFlavin groupBiochemistryRedoxCombinatorial chemistryFolding (chemistry)chemistry.chemical_compoundRedox activeheterocyclic compoundsPhysical and Theoretical ChemistryPeptidesDerivative (chemistry)Conjugate
researchProduct

Active Molybdenum‐Based Anode for Dehydrogenative Coupling Reactions

2018

A new and powerful active anode system that can be operated in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) has been discovered. In HFIP the molybdenum anode forms a compact, conductive, and electroactive layer of higher-valent molybdenum species. This system can replace powerful but stoichiometrically required MoV reagents for the dehydrogenative coupling of aryls. This electrolytic reaction is more sustainable and allows the conversion of a broad scope of activated arenes.

Materials science010405 organic chemistrychemistry.chemical_elementGeneral ChemistryElectrolyte010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysisCoupling reaction0104 chemical sciencesAnodechemistryMolybdenumReagentOxidative coupling of methaneStoichiometryAngewandte Chemie International Edition
researchProduct

CCDC 1520081: Experimental Crystal Structure Determination

2017

Related Article: Peter Franzmann, Sebastian B. Beil, Peter M. Winterscheid, Dieter Schollmeyer, Siegfried R. Waldvogel|2017|Synlett|28|957|doi:10.1055/s-0036-1588140

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-bromo-4-iodo-2-methoxy-5-((4-methylphenyl)sulfanyl)benzeneExperimental 3D Coordinates
researchProduct

CCDC 1520080: Experimental Crystal Structure Determination

2017

Related Article: Peter Franzmann, Sebastian B. Beil, Peter M. Winterscheid, Dieter Schollmeyer, Siegfried R. Waldvogel|2017|Synlett|28|957|doi:10.1055/s-0036-1588140

Space GroupCrystallography3-((4-methylphenyl)sulfanyl)-1-((4-methylphenyl)sulfonyl)-1H-indoleCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1882077: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2367-tetramethoxy-1-phenyltriphenyleneExperimental 3D Coordinates
researchProduct

CCDC 1520078: Experimental Crystal Structure Determination

2017

Related Article: Peter Franzmann, Sebastian B. Beil, Peter M. Winterscheid, Dieter Schollmeyer, Siegfried R. Waldvogel|2017|Synlett|28|957|doi:10.1055/s-0036-1588140

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters135-trimethoxy-2-((4-methylphenyl)sulfanyl)benzeneExperimental 3D Coordinates
researchProduct

CCDC 1520082: Experimental Crystal Structure Determination

2017

Related Article: Peter Franzmann, Sebastian B. Beil, Peter M. Winterscheid, Dieter Schollmeyer, Siegfried R. Waldvogel|2017|Synlett|28|957|doi:10.1055/s-0036-1588140

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5-methoxy-3-((4-methylphenyl)sulfanyl)-1-(methylsulfonyl)-1H-indoleExperimental 3D Coordinates
researchProduct

CCDC 1872281: Experimental Crystal Structure Determination

2019

Related Article: Peter Franzmann, Sebastian B. Beil, Dieter Schollmeyer, Siegfried R. Waldvogel|2019|Chem.-Eur.J.|25|1936|doi:10.1002/chem.201805938

Space GroupCrystallographyCrystal System67-dimethoxy-34-dihydro-2H-1-benzoselenopyranCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1882075: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-(34-dimethoxyphenyl)-171011-tetramethoxytriphenylene dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1882076: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

914-bis(ethoxycarbonyl)-2367-tetramethoxy[5]heliceneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1882073: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

diethyl 2351011-pentamethoxybenzo[c]chrysene-814-dicarboxylateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1976461: Experimental Crystal Structure Determination

2020

Related Article: Sebastian B. Beil, Manuel Breiner, Lara Schulz, Aaron Schüll, Timo Müller, Dieter Schollmeyer, Alexander Bomm, Michael Holtkamp, Uwe Karst, Wolfgang Schade, Siegfried R. Waldvogel|2020|RSC Advances|10|14249|doi:10.1039/D0RA02673E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(3-bromo-4-methoxyphenyl)(34-dimethoxyphenyl)acetonitrile methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1882074: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdiethyl 6789-tetramethoxybenzo[ghi]perylene-411-dicarboxylate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1520079: Experimental Crystal Structure Determination

2017

Related Article: Peter Franzmann, Sebastian B. Beil, Peter M. Winterscheid, Dieter Schollmeyer, Siegfried R. Waldvogel|2017|Synlett|28|957|doi:10.1055/s-0036-1588140

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters135-trimethoxy-2-(phenylselanyl)benzeneExperimental 3D Coordinates
researchProduct

CCDC 1872280: Experimental Crystal Structure Determination

2019

Related Article: Peter Franzmann, Sebastian B. Beil, Dieter Schollmeyer, Siegfried R. Waldvogel|2019|Chem.-Eur.J.|25|1936|doi:10.1002/chem.201805938

56-dimethoxy-1-benzothiopheneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1882078: Experimental Crystal Structure Determination

2019

Related Article: Sebastian B. Beil, Peter Franzmann, Timo Müller, Maximilian M. Hielscher, Tobias Prenzel, Dennis Pollok, Nicole Beiser, Dieter Schollmeyer, Siegfried R. Waldvogel|2018|Electrochimica Acta|302|310|doi:10.1016/j.electacta.2019.02.041

23561011-hexamethoxy-8-methylbenzo[e]acephenanthryleneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct