0000000000093000
AUTHOR
Alessandro Aiuppa
First volatile inventory for Gorely volcano, Kamchatka
We report here the very first assessment of volatile flux emissions from Gorely, an actively degassing volcano in Kamchatka. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles (H2O 93.5%, CO2, 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) and trace-halogens (Br, I), therefore estimating a total gas release of 11,000 tons·day−1 during September 2011, at which time the target was non-eruptively degassing at 900°C. Gorely is a typical arc emitter, contributing 0.3% and 1.6% of the total global fluxes from arc volcanism for CO2 and HCl, respectively. We show that Gorely's volcanic gas (H2O/SO2 43, CO2/SO2 1.2, HCl/SO2 0.5) is a…
Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 ga…
Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia
We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with…
Hydrothermal circulation on Ischia Island (Southern Italy), revealed by an integrated geochemical, geophysical and geological approach
Volcano-hosted hydrothermal systems are complex geological objects, whose thorough characterisation requires extensive and interdisciplinary work. Indeed, even thought geological, geochemical and geophysical observations offer highly significant but independent information, only an integrated multidisciplinary approach can yield a comprehensive characterisation of the chemical/physical structure of hydrothermal systems. Notwithstanding the extensive application of geological, geochemical and geophysical techniques in geothermal research, there are only a few examples in the literature of concurrent use of the three techniques [Finizola et al., 2002; Zlotnicki et al., 2009]; these studies ov…
Heterogeneity of volatile sources along the Halmahera arc, Indonesia
co-auteur étranger; International audience; The parallel Halmahera and Sangihe arcs in eastern Indonesia are sites of active arc-arc collision of considerable interest in developing understanding of the geodynamics and geochemistry of subduction zones. Owing to the comparative remoteness of the region, few ground-based studies of the volcanoes have been undertaken. Here, we report and integrate gas measurements and (isotope) geochemical analyses of lava samples for Dukono, Ibu, Gamkonora, Gamalama, and Makian volcanoes of the Halmahera arc. Summing gas fluxes for all five volcanoes indicates arcscale emission budgets for H 2 O, CO 2 , SO 2 , H 2 S, and H 2 of 96300±27000, 2093±450, 944±400,…
Outgassing of mantle fluids across an tectonically active crustal segment in between two volcanic systems (Etna and Aeolian arc): the Nebrodi-Peloritani case
Mantle-degassing occurs primarily through active volcanic systems and young oceanic lithosphere. Mantle-volatiles are also released by tectonically active continental regions, but the magnitude of this phenomenon is far less characterised. Helium (He) is a powerful tracer to track deep volatile degassing, because the mantle contains more 3He than the crust/atmosphere systems, which are dominated by radiogenic 4He produced in the crust. Here, we studied the volatiles in thermal manifestations discharged along the Nebrodi- Peloritani chain in north-eastern Sicily, with the aim of investigating the origin of thermalism and the related fluids. Thisseismically active region connects the African-…
Caratterizzazione geofisica dell’acquifero idrotermale dell’area di Panza (Ischia)
Gli obiettivi di questo lavoro sono quelli di ricostruire, con metodologie geofisiche integrate, le principali geometrie tettoniche ed idrogeologiche del territorio di Panza nell'isola di Ischia. La zona è stata scelta in quanto caratterizzata da un'intensa attività idrotermale e deformativa connessa con la presenza di un reservoir geotermico.
Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles)
Abstract Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500…
The Ischia Island hydrothermal system: an integrated multidisciplinary (geochemical, geophysical and geological) study
Ischia Island is the emergent portion of a large volcanic complex on the Gulf of Naples (Southern Italy). Ischia volcano has undertaken a complex evolution since 150 ka b.p., with prolonged cycles of effusive and explosive eruptions alternated with quiescence periods (the most recent of which started after the 1302 A.D. Arso eruption). Currently, hot springs (with discharge temperature up to 90 C), fumarolic gas emissions with CO2 up to 97%, and diffuse soil degassing testify a persistent activity state of the Ischia volcano. Ischia Island is a very good example of an active volcano hosting a large hydrothermal system and, in particular, its south-western sector has long been known to be th…
Geophysical study of the hydrothermal reservoir in the Panza area (Ischia, Italy)
The aim of the work is the reconstruction of the main geometric pattern and the characterisation with geophysical parameters of geological structures lying at small and medium depths in an area of the Ischia island (Italy), where a sensible hydrothermal activity is present.
The crater lake of Ilamatepec (Santa Ana) volcano, El Salvador: insights into lake gas composition and implications for monitoring
We here present the first chemical characterization of the volcanic gas plume issuing from the Santa Ana crater lake, a hyper-acidic crater lake (pH of − 0.2 to 2.5) in north-western El Salvador. Our results, obtained during regular surveys in 2017 and 2018 using a Multi-GAS instrument, demonstrate a hydrous gas composition (H2O/SO2 ratios from 32 to 205) and SO2 as the main sulfur species (H2S/SO2 = 0.03–0.1). We also find that gas composition evolved during our investigated period, with the CO2/SO2 ratio decreasing by one order of magnitude from March 2017 (37.2 ± 9.7) to November 2018 (< 3). This compositional evolution toward more magmatic (SO2-rich) compositions is interpreted in the c…
Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy,
UVolc: A software platform for measuring volcanic SO2 fluxes
We present here a novel stand-alone software platform, UVolc, for remotely sensed measurement of volcanic SO"2 emission rates. Such data are important diagnostics of activity conditions, with utility in forecasting measures. This code is made user friendly to enable volcanologists, who are not experts in the underlying physics of spectroscopy, to perform their own measurements. The program provides considerable reduction in errors and far greater operating flexibility than existing analogous code, which, unlike UVolc, can only interface with hardware no longer in manufacture. UVolc will be described here, including a presentation of data collected with this program in the field.
Ultraviolet Imaging of Volcanic Plumes: A New Paradigm in Volcanology
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes, than achievable hitherto. To date this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at &asymp; 1 Hz e…
Sampling and analysis methodology of atmospheric deposition: a study case form Mount Etna
A tool for evaluating geothermal power exploitability and its application to Ischia, Southern Italy
Abstract The paper proposes a method to evaluate the potential for electric power production at any site of possible geothermal interest. Accounting for geological data of the reservoirs, the method allows the computation of the available electrical power of the investigated site. Electrical energy production from geothermal sources is realized through different techniques, such as single flash and double flash, dry steam, and binary ORC plants. The technique chosen to be the most productive is determined by analyzing a specific range of geofluid properties, mainly temperature and pressure. Moreover, each plant typology has a global efficiency that may be correlated to geofluid enthalpy by …
Variations in gas emissions in correlation with lava lake level changes at Nyiragongo volcano, DR Congo.
Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile
International audience; Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake i…
Geochemical characterization of surface waters and groundwater resources in the Managua area (Nicaragua, Central America)
This paper reports new geochemical data on dissolved major and minor constituents in surface waters and ground waters collected in the Managua region (Nicaragua), and provides a preliminary characterization of the hydrogeochemical processes governing the natural water evolution in this area. The peculiar geological features of the study site, an active tectonic region (Nicaragua Depression) characterized by active volcanism and thermalism, combined with significant anthropogenic pressure, contribute to a complex evolution of water chemistry, which results from the simultaneous action of several geochemical processes such as evaporation, rock leaching, mixing with saline brines of natural or…
Volcanic plume monitoring at mount Etna by diffusive(passive)sampling
This paper reports the use of diffusive tubes in determining HF, HCI, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna's flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to <0.003 μmol m-3 , HCl from 2 to <0.01 μmol m -3, and SO2 from 11 to 0.04 μmol m -3 ), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements a…
First results of the Piton de la Fournaise STRAP 2015 experiment: multidisciplinary tracking of a volcanic gas and aerosol plume
Abstract. The STRAP (Synergie Transdisciplinaire pour Répondre aux Aléas liés aux Panaches volcaniques) campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements at the local (near the vent) and at the regional scales around the island were conducted. The STRAP 2015 campaign has become possible thanks to a strong cross-disciplinary collaboration between volcanologists and meteorologists. The main observations during four eruptive periods (85 days) are summarized. They include the estimates of SO2, CO2 and H2O emissions, the altitude of the plume at the vent and over different areas of La Réunion Island, …
Understanding volcanoes in the Vanuatu arc
We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low He-3/He-4 ratios in thermal fluids of Epi (4.0 +/- 0.1 R-a), Efate (4.5 +/- 0.1 R-a) and Pentecost (5.3 +/- 0.5 R-a) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display He-3/He-4 and C/He-3 ratios typical of subduction-related volcanic arcs: He-3/He-4 ratios range from 6.4 +/- 0.5 Ra in southernmost Tanna and 7.23 +/- 0.09 …
Mercury gas emissions from La Soufrière Volcano, Guadeloupe Island (Lesser Antilles)
Abstract Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM = Hg 0 (g) + Hg II (g) ) and particulate (Hg (p) ) mercury in the summit gas emissions of La Soufriere andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermal-magmatic volatiles has been occurring since 1992 from the Southern summit crater. We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg (p) mass ratio of ~ 63. Combining the mean TGM/H 2 S mass ratio of …
Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland
Abstract The Krýsuvik volcanic system is located on the oblique spreading Reykjanes Peninsula, SW Iceland. Since early 2009 the region has been undergoing episodes of localized ground uplift and subsidence. From April–November 2013, we operated near-real time monitoring of gas emissions in Krýsuvik, using a Multi-component Gas Analyzer System (Multi-GAS), collecting data on gas composition from a fumarole (H2O, CO2, SO2, H2S). The dataset in this study, comprises a near-continuous gas composition time series, the quantification of diffuse CO2 gas flux, analytical results for direct samples of dry gas, seismic records, and GPS data. Gas emissions from the Krýsuvik geothermal system were exam…
Rates of carbon dioxide plume degassing from Mount Etna volcano,
We report here on the real-time measurement of CO2 and SO2 concentrations in the near-vent volcanic gas plume of Mount Etna, acquired by the use of a field portable gas analyzer during a series of periodic field surveys on the volcano's summit. During the investigated period (September 2004 to September 2005), the plume CO2/SO2 ratio ranged from 1.9 to 10.8, with contrasting composition for Northeast and Voragine crater plumes. Scaling the above CO2/SO2 ratios by UV spectroscopy determined SO2 emission rates, we estimate CO2 emission rates from the volcano in the range 0.9-67.5 kt d-1 (average, 9 kt d-1). About 2 kt of CO2 were emitted daily on average during quiescent passive degassing, wh…
First observational evidence for the CO&lt;sub&gt;2&lt;/sub&gt;-driven origin of Stromboli's major explosions
Abstract. We report on the first detection of CO2 flux precursors of the till now unforecastable "major" explosions that intermittently occur at Stromboli volcano (Italy). An automated survey of the crater plume emissions in the period 2006–2010, during which 12 such explosions happened, demonstrated that these events are systematically preceded by a brief phase of increasing CO2/SO2 weight ratio (up to >40) and CO2 flux (>1300 t d−1) with respect to the time-averaged values of 3.7 and ~500 t d−1 typical for standard Stromboli's activity. These signals are best explained by the accumulation of CO2-rich gas at a discontinuity of the plumbing system (decreasing CO2 emission at the surfa…
First measurements of magmatic gas composition and fluxes during an eruption (October 2010) of Piton de la Fournaise hot spot volcano, La reunion island
Piton de la Fournaise (PdF), in the western Indian Ocean, is a very active hot spot basaltic volcano, with 1-2 fissure eruptions per year on average. Its magmas have been widely studied and its eruptions are well anticipated by the local seismic-geodetic monitoring network. However, no datum was yet available for its magmatic gas emissions (restricted to only eruptive phases and hardly accessible). Here we report on the first measurements of the chemical composition and mass flux of magmatic gases emitted during a PdF eruption in October 2010. Hot gases arising from different eruptive vents were remotely measured with OP-FTIR spectroscopy, using molten lava fragments as IR radiation source,…
Geochemical characterization of the Lake “Specchio di Venere”, Pantelleria island, Italy.
Trace metal modelling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius
Mafic magma feeds degassing unrest at Vulcano Island, Italy
AbstractThe benign fuming activity of dormant volcanoes is punctuated by phases of escalating degassing activity that, on some occasions, ultimately prelude to eruption. However, understanding the drivers of such unrest is complicated by complex interplay between magmatic and hydrothermal processes. Some of the most comprehensively characterised degassing unrest have recently been observed at La Fossa cone on Vulcano Island, but whether or not these episodes involve new, volatile-rich ascending magma remains debated. Here, we use volcanic gas measurements, in combination with melt inclusion information, to propose that heightened sulphur dioxide flux during the intense fall 2021 La Fossa un…
ENVIRONMENTAL IMPACT OF MT. ETNA’S VOLCANIC EMISSIONS: TRACE METAL BULK-DEPOSITION
Periodic volcanic degassing behavior: The Mount Etna example
[1] In contrast to the seismic and infrasonic energy released from quiescent and erupting volcanoes, which have long been known to manifest episodes of highly periodic behavior, the spectral properties of volcanic gas flux time series remain poorly constrained, due to a previous lack of hightemporal resolution gas-sensing techniques. Here we report on SO2 flux measurements, performed on Mount Etna with a novel UV imaging technique of unprecedented sampling frequency (0.5Hz), which reveal, for the first time, a rapid periodic structure in degassing from this target. These gas flux modulations have considerable temporal variability in their characteristics and involve two period bands: 40–250…
Volcanic halogen emission and their interaction with the atmosphere
Ozone depletion in tropospheric volcanic plumes
Ground based remote sensing techniques are used to measure volcanic SO2 fluxes in efforts to characterise volcanic activity. As these measurements are made several km from source there is the potential for in-plume chemical transformation of SO2 to sulphate aerosol (conversion rates are dependent on meteorological conditions), complicating interpretation of observed SO2 flux trends. In contrast to anthropogenic plumes, SO2 lifetimes are poorly constrained for tropospheric volcanic plumes, where the few previous loss rate estimates vary widely (from 99% per hour). We report experiments conducted on the boundary layer plume of Masaya volcano, Nicaragua during the dry season. We found that SO2…
3 He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc
Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab sediment fluids must be distinguished from the effects of magma differentiation, degassing, and crustal contamination. The study of fluid inclusions (FIs) trapped in minerals of volcanic rocks is becoming an increasingly used methodology in geochemical studies that integrates the classical study of volcanic and geothermal fluids. Here, we report on the first noble gas (He, Ne, Ar) concentrations and isotopic ratios of FI in olivin…
Emission of trace halogens (Br, I) from a basaltic volcano: Mount Etna
Magma and volatile supply to post-collapse volcanism and block resurgence in Siwi caldera (Tanna Island, Vanuatu arc)
Siwi caldera, in the Vanuatu arc (Tanna island), is a rare volcanic complex where both persistent eruptive activity (Yasur volcano) and rapid block resurgence (Yenkahe horst) can be investigated simultaneously during a post-caldera stage. Here we provide new constraints on the feeding system of this volcanic complex, based on a detailed study of the petrology, geochemistry and volatile content of Yasur-Siwi bulk-rocks and melt inclusions, combined with measurements of the chemical composition and mass fluxes of Yasur volcanic gases. Major and trace element analyses of Yasur-Siwi volcanic rocks, together with literature data for other volcanic centers, point to a single magmatic series and p…
Silicate Particles in the Mt Etna and Masaya Plumes
Trace elements in the thermal groundwaters of Vulcano Island (Sicily)
The chemical concentrations of many trace elements that have never before been examined in Vulcano Island groundwaters are reported. Chemical data indicate that rock composition is not the only factor determining the metal content in the aqueous system. The observed concentrations depend mainly on: (1) the chemical composition of the host rocks; (2) the chemical–physical conditions of the weathering solution (temperature, acidity, redox conditions); (3) input of magmatic gases; (4) adsorption of metal ions on oxide particles, formation of soluble complexes and/or precipitation of solid phases. Chloride complexes in solution are of minimal significance for all elements with the exception of …
Shallow magma dynamics at open-vent volcanoes tracked by coupled thermal and SO2 observations
Open-vent volcanic activity is typically sustained by ascent and degassing of shallow magma, in which the rate of magma supply to the upper feeding system largely exceeds the rate of magma eruption. Such unbalance between supplied (input) and erupted (output) magma rates is thought to result from steady, degassing-driven, convective magma overturning in a shallow conduit/feeding dyke. Here, we characterize shallow magma circulation at Stromboli volcano by combining independent observations of heat (Volcanic Radiative Power; via satellite images) and gas (SO2, via UV camera) output in a temporal interval (from August 1, 2018 to April 30, 2020) encompassing the summer 2019 effusive eruption a…
Fluid/melt partitioning coefficients of chlorine in basaltic melt
First in-situ measurements of plume chemistry at mount garet volcano, island of gaua (Vanuatu)
Recent volcanic gas compilations have urged the need to expand in-situ plume measurements to poorly studied, remote volcanic regions. Despite being recognized as one of the main volcanic epicenters on the planet, the Vanuatu arc remains poorly characterized for its subaerial emissions and their chemical imprints. Here, we report on the first plume chemistry data for Mount Garet, on the island of Gaua, one of the few persistent volatile emitters along the Vanuatu arc. Data were collected with a multi-component gas analyzer system (multi-GAS) during a field campaign in December 2018. The average volcanic gas chemistry is characterized by mean molar CO2/SO2, H2O/SO2, H2S/SO2 and H2/SO2 ratios …
Measurements of volcanic SO2 and CO2 fluxes by combined DOAS, Multi-GAS and FTIR observations: a case study from Turrialba and Telica volcanoes
Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of exc…
Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy)
Abstract New geochemical data on dissolved major and minor constituents in 276 groundwater samples from Etna aquifers reveal the main processes responsible for their geochemical evolution and mineralisation. This topic is of particular interest in the light of the progressive depletion of water resources and groundwater quality in the area. Multivariate statistical analysis reveal 3 sources of solutes: (a) the leaching of the host basalt, driven by the dissolution of magma-derived CO2; (b) mixing processes with saline brines rising from the sedimentary basement below Etna; (c) contamination from agricultural and urban wastewaters. The last process, highlighted by increased concentrations of…
Volcanic Plume CO2 Flux Measurements at Mount Etna by Mobile Differential Absorption Lidar
Volcanic eruptions are often preceded by precursory increases in the volcanic carbon dioxide (CO2) flux. Unfortunately, the traditional techniques used to measure volcanic CO2 require near-vent, in situ plume measurements that are potentially hazardous for operators and expose instruments to extreme conditions. To overcome these limitations, the project BRIDGE (BRIDging the gap between Gas Emissions and geophysical observations at active volcanoes) received funding from the European Research Council, with the objective to develop a new generation of volcanic gas sensing instruments, including a novel DIAL-Lidar (Differential Absorption Light Detection and Ranging) for remote (e.g., distal) …
UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)
Abstract The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from…
The emissions of CO2 and other volatiles from the world’s subaerial volcanoes
AbstractVolcanoes are the main pathway to the surface for volatiles that are stored within the Earth. Carbon dioxide (CO2) is of particular interest because of its potential for climate forcing. Understanding the balance of CO2 that is transferred from the Earth’s surface to the Earth’s interior, hinges on accurate quantification of the long-term emissions of volcanic CO2 to the atmosphere. Here we present an updated evaluation of the world’s volcanic CO2 emissions that takes advantage of recent improvements in satellite-based monitoring of sulfur dioxide, the establishment of ground-based networks for semi-continuous CO2-SO2 gas sensing and a new approach to estimate key volcanic gas param…
Turmoil at Turrialba volcano (Costa Rica): Degassing and eruptive behavior inferred from high-frequency gas monitoring
Eruptive activity at Turrialba volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here, we use high frequency gas monitoring to track the behavior of the volcano between 2014 and 2015, and to decipher magmatic vs. hydrothermal contributions to the eruptions. Pulses of deeply-derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to two weeks before eruptions, which are accompanied…
Mercury Emissions Associated with Volcanoes and Geothermal Sources
There is some debate at present regarding the quantity of mercury naturally released by volcanoes and its relative significance to the natural Hg budget. In order to better understand the role of volcanoes in the global mercury budget a number of field campaigns were carried out to evaluate the Hg/S ratios in volcanic gases around the world. Measurements have been made of emissions of Masaya (Nicaragua), Etna and Vulcano (Italy), Tatun (Taiwan), Taal and Makiling (Philippines) and Kilauea (Hawaii, USA). Emissions from open vents, fumaroles, hot springs, bubbling mud pools and altered ground were investigated at these sites and concentrations of mercury elevated above background levels were …
High temporal and spatial resolution UV camera measurements at Stromboli: insights on passive SO2 gas emission, Strombolian eruptions, and puffing.
Stromboli is one of the most active volcanoes on Earth, and one of the few where passive degassing persistently coexists with the (non-passive) release of over-pressurized gas pockets during both explosions and gas puffing activity. These transient gas bursting-puffing phenomena are difficult to study by conventional spectroscopic scanning techniques (e.g., DOAS), since these have far too low temporal resolution. Here, we take advantage of the high spatial and time resolution (0.6-1 Hz) of the recently developed UV camera technique to obtain a simultaneous characterisation of all the different forms of SO2 release at Stromboli (including passive degassing, Strombolian eruptions and puffing)…
LINKING PLUME CO2 FLUX EMISSIONS AND ERUPTIVE ACTIVITY AT STROMBOLI VOLCANO (ITALY)
Synthesis of observations of halogen-containing gases, ozone, and gaseous elemental mercury in the tropospheric plume of Redoubt Volcano, Alaska
Noble gas magmatic signature of the Andean Northern Volcanic Zone from fluid inclusions in minerals
Trace volatile elements like He are key for understanding the mantle source signature of magmas and to better constrain the relative roles of subduction and crustal processes to the variability of along-arc chemical and isotopic signatures of magmatic fluids. Here we report on noble gas abundances and isotopic data of Fluid Inclusions (FIs) in eruptive products and/or fumarolic gases from the Colombia-Ecuador segment of Andean Northern Volcanic Zone (NVZ). FIs in olivine phenocrysts from Ecuador (El Reventador, Cotopaxi and Tungurahua) yield air-normalized corrected He-3/He-4 ratios of 7.0-7.4 R-A, within the MORB range (8 +/- 1 R-A). With exception of the Cotopaxi lavas (opx = 50 km at the…
. New ground-based lidar enables volcanic CO2 flux measurements
AbstractThere have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volc…
Degassing regime of Hekla volcano 2012-2013
Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla's monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions.Hekla's quiescent gas composition was CO2-dominated (0.8mol fraction) and the δ13C signature was consistent with published value…
Volcanic CO_2 detection with a DFM/OPA-based lidar
The DFM/OPA-based lidar BILLI was used to investigate the volcanic plume released by the hydrothermal vent of Pisciarelli, in the Campi Flegrei volcano. BILLI remotely measured CO2 concentrations in cross-sections of the nearvent plume using the differential absorption technique. To our knowledge, this is the first example of lidar-based measurement of volcanic CO2 . The spatial resolution was 1.5 m and the temporal resolution 20 s. © 2015 Optical Society of America.
BrO formation in volcanic plumes
Volcanoes have only recently been recognized as a potentially major source of reactive bromine species to the atmosphere, following from the detection of bromine monoxide (BrO) in the plume emitted by Soufriere Hills Volcano, Montserrat. However, BrO is not expected to be emitted in significant quantity from magma, presenting a puzzle regarding its formation. We report here new field measurements of the tropospheric plume emitted by Mt. Etna, Italy, which provide the first direct evidence of fast oxidation of halogen species in a volcanic plume, and lead to an explanation of how BrO is generated from magmatic HBr emissions. We show that the timescale of BrO formation (a few minutes after em…
Selenium mobilization during Rain-Soil Interaction at Etna volcano
Humans are attracted by the fertile properties of volcanic soils. Currently around 10% of the world population lives within active volcanic areas. Volcanoes emit enormous amounts of potentially toxic elements, even in the absence of obvious volcanic activity. Selenium is particularly interesting due to it geochemical similarities with sulphur, a major compound in volcanic gasses. Although selenium (Se) is an essential element for humans, ingestion of an excess amount of Se can produce adverse effects. Mt. Etna, the biggest volcano in Europe, is persistently active for the last 200,000 years. It is one of the most intensely monitored volcanoes. In the area, volcanic gasses, rainwater and gro…
Crater Gas Emissions and the Magma Feeding System of Stromboli Volcano
Quiescent and explosive magma degassing at Stromboli volcano sustains high-temperature crater gas venting and a permanent volcanic plume which constitute key sources of information on the magma supply and dynamics, the physical processes controlling the explosive activity and, more broadly, the volcano feeding system. The chemical composition and the mass output of these crater emissions (gases, trace metals, radioactive isotopes) were measured using different methodologies: within-plume airborne measurements, ground-based plume filtering, and/or in situ analysis, remote UV and open-path Fourier transform infrared absorption spectroscopy. The results obtained, summarized in this paper, demo…
The composition of fluids stored in the central Mexican lithospheric mantle: Inferences from noble gases and CO2 in mantle xenoliths
We present the first isotopic (noble gases and CO2) characterization of fluid inclusions coupled to Raman microspectroscopy analyses in mantle xenoliths from Central Mexico, a geodynamically complex area where the Basin and Range extension was superimposed on the Farallon subduction (terminated at 28 Ma). To characterize the isotopic signature of the Central Mexican lithospheric mantle, we focus on fluid inclusions entrapped in mantle xenoliths found in deposits of the Joya Honda maar (JH), a Quaternary monogenetic volcano belonging to the Ventura Espiritu Santo Volcanic Field (VESVF) in the state of San Luis Potosí (central Mexico). Thirteen ultramafic plagioclase-free xenoliths were selec…
Emission of bromine and iodine from Mount Etna volcano
[1] Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr−1 and 0.01 kt yr−1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I flu…
Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland
AbstractRecent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport1–4, important characteristics of mid-ocean ridge magmatism1,5. A consequence of such shallow crustal processing of magmas4,5 is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust6,7. Here we present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption, combined with associate…
Non-stationary nature of SO2 degassing at Etna’s North-east crater (Italy).
Investigating Etna’s long-term SO2 flux behaviour has led to important conclusions on the structure of the volcano’s magma feeding system, magma production (and degassing) rates, and causes for the excess degassing behaviour. Nonetheless, our knowledge of the short-term (timescales of seconds to a few hours) behaviour of magmatic volatiles (e.g., bubble coalescence, separate ascent and surface bursting of gas-rich bubbles) in the volcano’s upper feeding conduit system is still fragmentary, and based on indirect evidences (petrologic-textural data, observation of geophysical signals , physical modelling and laboratory experiments). In the past, direct gas flux measurements at Etna have been ta…
New evidences on mercury emissions from Earth volcanism
Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy)
Abstract There is an urgent need to better constrain the global rates of mercury degassing from natural sources, including active volcanoes. Hitherto, estimates of volcanic fluxes have been limited by the poorly determined speciation of Hg in volcanic emissions. Here, we present a systematic characterisation of mercury partitioning between gaseous (Hg(g)) and particulate (Hg(p)) forms in the volcanic plume of Mount Etna, the largest open-vent passively degassing volcano on Earth. We demonstrate that mercury transport is predominantly in the gas phase, with a mean Hg(p)/Hg(g) ratio of ∼0.01 by mass. We also present the first simultaneous measurement of divalent gaseous mercury ( Hg ( g ) II …
Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawai`i
Volcanic plume samples taken in 2008 and 2009 from the Halemàumàu eruption at Kīlauea provide new insights into Kīlauea's degassing behaviour. The Cl, F and S gas systematics are consistent with syn-eruptive East Rift Zone measurements suggesting that the new Halemàumàu activity is fed by a convecting magma reservoir shallower than the main summit storage area. Comparison with degassing models suggests that plume halogen and S composition is controlled by very shallow (<3m depth) decompression degassing and progressive loss of volatiles at the surface. Compared to most other global volcanoes, Kīlauea's gases are depleted in Cl with respect to S. Similarly, our Br/S and I/S ratio measurem…
Atmospheric Impacts of Volcanic Volatiles: Trace Elements in Bulk Deposition at Mount Etna (Italy)
Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico
Abstract Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichon volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3…
Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)
Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…
Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions
The mild activity of basaltic volcanoes is punctuated by violent explosive eruptions that occur without obvious precursors. Modelling the source processes of these sudden blasts is challenging. Here, we use two decades of ground deformation (tilt) records from Stromboli volcano to shed light, with unprecedented detail, on the short-term (minute-scale) conduit processes that drive such violent volcanic eruptions. We find that explosive eruptions, with source parameters spanning seven orders of magnitude, all share a common pre-blast ground inflation trend. We explain this exponential inflation using a model in which pressure build-up is caused by the rapid expansion of volatile-rich magma ri…
Fast tracking of wind speed with a differential absorption LiDAR system: First results of an experimental campaign at Stromboli volcano
Carbon dioxide ( CO 2 ) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO 2 concentrations and wind speeds, using the same sample o…
A model of degassing for Stromboli volcano
International audience; A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas m…
The 2010 Eyjafiallajokull volcanic summit eruption: evidences from ash-leachates analysis and ground deposition fluxes
The Eyjafjallajökull 2010 eruption was an extraordinary event in that it led to widespread over Europe. Volcanic processes which lead to eruptions can be investigated by monitoring a variety of parameters, including the composition of ash leachates. Fine-grained tephra erupted from active vents, and transported through volcanic plumes, can adsorbs, and therefore rapidly scavenge, volatile elements such as S, halogens, and metal species in the form of soluble salts adhering to ash surfaces. Analysis of such water-soluble phases is a suitable complement for the remote sensing of volcanic gases at inaccessible volcanoes, like Eyjafjallajökull. The 2010 Eyjafjallajökull eruption developed in fo…
Leachate Analyses of volcanic ashes from the 2010 Eyjafjallajökull eruption
Volcanic processes which lead to eruptions can be investigated by monitoring a variety of parameters, including the composition of ash leachates. Fine-grained tephra erupted from active vents, and transported through volcanic plumes, can adsorb, and therefore rapidly scavenge, volatile elements such as sulphur, halogens, and metal species in the form of soluble salts adhering to ash surfaces. Analysis of such water-soluble surface materials is a suitable complement for the remote sensing of volcanic gases at inaccessible volcanoes. The April 2010 Eyjafjallajökull eruption has been characterised by several distinct phases, with an initial effusion of alkali basalt on the volcano's northeast …
Sulphur-gas concentrations in volcanic and geothermal areas in Italy and Greece: Characterising potential human exposures and risks
Abstract Passive samplers were used to measure the atmospheric concentrations of SO 2 naturally emitted at three volcanoes in Italy (Etna, Vulcano and Stromboli) and of H 2 S naturally emitted at three volcanic/geothermal areas in Greece (Milos, Santorini and Nisyros). The measured concentrations and dispersion patterns varied with the strength of the source (open conduits or fumaroles), the meteorological conditions and the area topography. At Etna, Vulcano and Stromboli, SO 2 concentrations reach values that are dangerous to people affected by bronchial asthma or lung diseases (> 1000 μg m − 3 ). H 2 S values measured at Nisyros also exceed the limit considered safe for the same group of …
First-time lidar measurement of water vapor flux in a volcanic plume
Abstract The CO 2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar returns were obtained up to a range of 3 km. The spatial resolution was 15 m and the temporal resolution was 20 s. By combining these measurements, the water vapor flux in the Stromboli volcano plume was found. To our knowledge, it is the first time that lidar retrieves water vapor concentrations in a volcanic plume.
Shrinkage Bubbles: The C–O–H–S Magmatic Fluid System at San Cristóbal Volcano
New analytical results for the composition of shrinkage bubbles (09-70 vol. %) in olivine-hosted (Fo <80%) primary melt inclusions (MIs) have been incorporated into a novel geochemical model for San Cristó bal volcano, Nicaragua. The vapour, liquid, and mineral components found inside shrinkage bubbles may represent relics of early C-O-H-S fluids exsolved from a magmatichydrothermal system. This conclusion is supported by high-resolution Raman microspectroscopy revealing: (1) gaseous CO2 (d=0·17-0·31 g/cm3 in 31 samples) coexisting with liquid H2O (in seven samples) at ambient temperature (<22°C) inside the shrinkage bubbles of naturally quenched inclusions; (2) several mineral phases (i.e.…
S, Cl and F degassing as an indicator of volcanic dynamics: The 2001 eruption of Mount Etna
[1] The recent eruption of Mount Etna (July 2001) offered the opportunity to analyze magma-derived volatiles emitted during pre- and syn-eruptive phases, and to verify whether their composition is affected by changes in volcanic dynamics. This paper presents the results of analyses of F, Cl and S in the volcanic plume collected by filter-packs, and interprets variations in the composition based on contrasting solubility in magmas. A Rayleigh-type degassing mechanism was used to fit the acquired data and to estimate Henry's solubility constant ratios in Etnean basalt. This model provided insights into the dynamics of the volcano. Abundances of sulfur and halogens in eruptive plumes may help …
Magmatic gas leakage at Mount Etna (Sicily, Italy): Relationships with the volcano-tectonic structures, the hydrological pattern and the eruptive activity.
In this paper we provide a review of chemical and isotopic data gathered over the last three decades on Etna volcano's fluid emissions and we present a synthetic framework of their spatial and temporal relationships with the volcano-tectonic structures, groundwater circulation and eruptive activity. We show that the chemistry, intensity and spatial distribution of gas exhalations are strongly controlled by the main volcano-tectonic fault systems. The emission of mantle-derived magmatic volatiles, supplied by deep to shallow degassing of alkali-hawaiitic basalts, persistently occurs through the central conduits, producing a huge volcanic plume. The magmatic derivation of the hot gases is ver…
Carbon concentration increases with depth of melting in Earth’s upper mantle
Carbon in the upper mantle controls incipient melting of carbonated peridotite and so acts as a critical driver of plate tectonics. The carbon-rich melts that form control the rate of volatile outflux from the Earth’s interior, contributing to climate evolution over geological times. However, attempts to constrain the carbon concentrations of the mantle source beneath oceanic islands and continental rifts is complicated by pre-eruptive volatile loss from magmas. Here, we compile literature data on magmatic gases, as a surface expression of the pre-eruptive volatile loss, from 12 oceanic island and continental rift volcanoes. We find that the levels of carbon enrichment in magmatic gases cor…
DEEP RESERVOIR TEMPERATURES OF LOW-ENTHALPY GEOTHERMAL SYSTEMS IN TUNISIA: NEW CONSTRAINTS FROM CHEMISTRY OF THERMAL WATERS
Tunisia is characterized by hot and warm groundwaters (temperature up to 75 °C) which represent the surface manifestation of geothermal systems hosted in carbonate-evaporite rock sequences. The T-conditions of Tunisia deep thermal reservoirs are here evaluated for the first time at the regional scale. The results here shown clearly highlight the limitations inherent in the application of common geothermometric methods in the estimation of equilibrium temperatures in sedimentary environments. The modeling approach proposed by Chiodini et alii (1995), which makes use of the ratios between dissolved HCO3, SO4 and F, provides the most reliable results, and allows us to derive equilibrium temper…
Volcanic halogen emissions: sources and consequences
Plume chemistry provides insights into the mechanisms of sulfur and halogen degassing at basaltic volcanoes,
This paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002-January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1-6.8 and 0.9-5.6, respectively. Plume S/Cl ratios increased by a factor of ∼10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to the low v…
The contribution of volcanic emissions (Etna, Stromboli and Vulcano) to the atmospheric trace metals budget in the Mediterranean basin
Volcanic emissions represent one of the major natural source for several trace metals (Cd, Cu, As, Pb, Hg and Zn) into the atmosphere both as gaseous and aerosol forms. The Mediterranean Sea can be considered a large geochemical sink for these elements whose source are the huge amounts of aerosols of different origin. The industrialized areas located in the northern part of the basin represent a nearly constant source of the anthropogenic-dominated aerosol. By contrast, the arid and desert regions located at the southern and eastern parts of the Mediterranean, are the sources of frequent dust “pulses” perturbing the “steady-state” conditions of the local atmosphere through the input of seve…
Geochemical mapping of magmatic gas–water–rock interactions in the aquifer of Mount Etna volcano
Abstract Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995–1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S–SW and E lower flanks of the volcanic pile, but also in…
Vulcamera: a program for measuring volcanic SO2 with UV cameras
First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei
[1] The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, sugg…
Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)
Abstract Open vent basaltic volcanoes account for a substantial portion of the global atmospheric outgassing flux, largely through passive degassing and mild explosive activity. We present volcanic gas flux and composition data from Yasur Volcano, Vanuatu collected in July 2018. The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 ratio of 2.14, H2O/SO2 of 148 and SO2/HCl of 1.02. The measured mean SO2 flux in the period of 6th to 9th July is 4.9 kg s−1. Therefore, the mean fluxes of the other species are 7.5 kg∙s−1 CO2, 208 kg∙s−1 H2O and 4.8 kg∙s−1 HCl. The degassing regime at Yasur volcano ranges from ‘passive’ to ‘active’ styles, with the latter including Stromb…
Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy
[1] We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano's summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2-SO2 and H2-H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2-SO2 ratios in combination with a time-averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time-averaged H2 flux of ∼0.65 Gg yr−1, suggesting that the volcanogenic contribution to the…
Volatile supply process of Etna volcano deduced from the volcanic gas composition.
Trace metal modeling of groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy
We report a detailed study of trace metals in groundwaters from the Somma-Vesuvius volcanic complex and present a model of the chemical processes that control the fate of these components during gas–water–rock interactions. Trace metal concentrations in Vesuvian groundwaters range from 0.01 to 0.1 Ag/l for ultra-trace elements (Sb, Cs, Co, Cd, and Pb) up to 0.1–10 mg/l for minor elements (Fe and Sr), leading to water–rock ratios from ~0.5 to 10 � 9 when normalized to trace element concentrations in the host rocks. Our results indicate non-isochemical dissolution of local volcanic rocks by groundwaters, during which mobile trace elements (As, Se, Mo, V, Li) are enriched and elements such as …
The primary volcanic aerosol emission from Mt Etna: Size-resolved particles with SO2 and role in plume reactive halogen chemistry
International audience; Volcanoes are an important source of aerosols to the troposphere. Within minutes after emission, volcanic plume aerosol catalyses conversion of co-emitted HBr, HCl into highly reactive halogens (e.g. BrO, OClO) through chemical cycles that cause substantial ozone depletion in the dispersing downwind plume.This study quantifies the sub-to-supramicron primary volcanic aerosol emission (0.2-5 μm diameter) and its role in this process. An in-situ ground-based study at Mt Etna (Italy) during passive degassing co-deployed an optical particle counter and Multi-Gas SO2 sensors at high time resolution (0.1 Hz) enabling to characterize the aerosol number, size-distribution and…
First volatile inventory for Gorely volcano, Kamchatka
[1] We report here the very first assessment of volatile flux emissions from Gorely, an actively degassing volcano in Kamchatka. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles (H2O ∼93.5%, CO2, ∼2.6%, SO2 ∼2.2%, HCl 1.1%, HF 0.3%, H20.2%) and trace-halogens (Br, I), therefore estimating a total gas release of ∼11,000 tons·day−1during September 2011, at which time the target was non-eruptively degassing at ∼900°C. Gorely is a typical arc emitter, contributing 0.3% and 1.6% of the total global fluxes from arc volcanism for CO2 and HCl, respectively. We show that Gorely's volcanic gas (H2O/SO2 ∼43, CO2/SO2 ∼1.2, HCl/SO2∼…
Volcanic CO2 seep geochemistry and use in understanding ocean acidification
AbstractOcean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new g…
Real-time simultaneous detection of volcanic Hg and SO2at La Fossa Crater, Vulcano (Aeolian Islands, Sicily)
Measuring Hg/SO2 ratios in volcanic emissions is essential for better apportioning the volcanic contribution to the global Hg atmospheric cycle. Here, we report the first real-time simultaneous measurement of Hg and SO2 in a volcanic plume, based on Lumex and MultiGAS techniques, respectively. We demonstrate that the use of these novel techniques allows the measurements of Hg/SO2 ratios with a far better time resolution than possible with more conventional methods. The Hg/SO2 ratio in the plume of FO fumarole on La Fossa Crater, Vulcano Island spanned an order of magnitude over a 30 minute monitoring period, but was on average in qualitative agreement with the Hg/SO2 ratio directly measured…
First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia)
The composition and fluxes of volcanic gases released by persistent open-vent degassing at Bromo Volcano, east Java (Indonesia), were characterised in September 2014 from both in-situ Multi-GAS analysis and remote spectroscopic (dual UV camera) measurements of volcanic plume emissions. Our results demonstrate that Bromo volcanic gas is water-rich (H2O/SO2 ratios of 56-160) and has CO2/SO2 (4.1 +/- 0.7) and CO2/S-tot (3.2 +/- 0.7) ratios within the compositional range of other high-temperature magma-derived gases in Indonesia. H-2/H2O and H2S/SO2 ratios constrain a magmatic gas source with minimal temperature of 700 degrees C and oxygen fugacity of 10(-17)-10(-18) bars. UV camera sensing on …
Insight into eruptive cyclic behavior of Mount Etna during 2011: geophysical and geochemical constraints.
Volcanic soil-rainwater interaction at Mount Etna, Sicily. Preliminary Results
Quantifying carbon dioxide flux from dormant volcanoes with low-temperature fumarolic activity: demonstration from measurements at La Soufrière, Guadeloupe and Campi Flegrei, Italy
Quantifying the flux of magma derived CO2 dissipated by fumarolic fields at dormant volcanoes is fundamental to assess their current state of hydrothermal activity and, therefore, the likelihood of a future phreatic/magmatic eruption. There is, in fact, documented evidence that gas fluxes, and CO2 flux in particular, can increase substantially during volcanic unrests and prior to eruption, due to either degassing of new ascending magma or changes in the hydrothermal system physical regime. Quantifying CO2 emissions is relatively straightforward at open-conduit volcanoes with high-temperature gas venting, which release high enough quantities of SO2 remotely measurable with UV spectroscopy an…
Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera: A geochemical, geophysical, and volcanological study
The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morpho-bathymetric and seismo-stratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure forme…
Helium isotope systematics of volcanic gases and thermal waters of Guadeloupe Island, Lesser Antilles
Abstract The island of Guadeloupe is located in the middle of the 850 km long Lesser Antilles island arc. Present-day volcanic and geothermal activity is concentrated in two systems both located in the southwestern part of the island (Basse Terre): the La Soufriere volcanic complex and the Bouillante hydrothermal system, some 20 km to the northwest of the volcano. We report here the largest isotopic data set for helium isotopes in hydrothermal gases and waters from both systems, acquired between 1980 and 2012. 3 He/ 4 He ratios in the fumarolic gases of La Soufriere volcano have been quite homogeneous and stable over the last thirty years. The average ratio of 8.2 ± 0.2 R a confirms that th…
Unrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption?
Resuming erupting activity at volcanoes that have been long quiescent poses a significant challenge to hazard assessment, as it require assessment of whether the change in activity is an isolated event or the beginning of a new eruptive sequence. Such inception is often poorly characterised as quiescent volcanoes tend to be poorly equipped and not extensively monitored, especially with respect to gas geochemistry. Here, we report gas composition and flux measurements from a newly opened vent at the very onset of eruptive activity at the Nevados de Chillán volcanic complex (Chile) in January-February 2016. The molar proportions of H2O, CO2, SO2, H2S and H2 gases are found to be 98.4, 0.97, 0…
Steam and gas emission rate from La Soufriere volcano, Guadeloupe (Lesser Antilles): Implications for the magmatic supply during degassing unrest
Abstract Since its last magmatic eruption in 1530 AD, La Soufriere andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises. Here we report on the first direct quantification of gas plume emissions from its summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in March 2006 and March 2012 by measuring the horizontal and vertical distributions of volcanic gas concentrations in the air-diluted plume and scaling to the speed of plume transport. Fluxes in 2006 combine real-time measurements of volcanic H2S concentrations and plume parameters with the composition of the hot (108.5 °C) fumarolic fluid at …
Temporal evolution of the Fogo Volcano magma storage system (Cape Verde Archipelago): a fluid inclusions perspective
The architecture of the magma storage system underneath Fogo Volcano (Cape Verde Archipelago) is characterised using novel fluid inclusion results from fifteen basanites, spanning the last 120 thousand years of volcanic activity, and encompassing a major flank collapse event at -73 ka. Fluid inclusions, hosted in olivine and clinopyroxene, are made of pure CO2, and based on their textural characteristics, are distinguished in early (Type I) and late (Type II) stage. Inclusions homogenize to a liquid phase in the 2.8 to 30.8 degrees C temperature range. Densities values, recalculated assuming an original 10% H2O content at the time of trapping, range from 543 to 952 kg center dot m(-3), and …
Accurate measurement of volcanic SO2flux: Determination of plume transport speed and integrated SO2concentration with a single device
[1] Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume's cross section, and multiplying by the plume's transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental desi…
Spatially resolved SO2 flux emissions from Mt Etna
We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Acti…
Preliminary estimates of volcanic gaseous and particulate-phase mercury emissions at Mt. Etna and Vulcano Island
Unusually large magmatic CO2gas emissions prior to a basaltic paroxysm
[1] The low-intensity activity of basaltic volcanoes is occasionally interrupted by short-lived but energetic explosions which, whilst frequently observed, are amongst the most enigmatic volcanic events in Nature. The combination of poorly understood and deep, challenging to measure, source processes make such events currently impossible to forecast. Here we report increases in quiescent degassing CO2 emissions (>10,000 t/day) prior to a powerful explosive event on Stromboli volcano on 15 March 2007. We interpret such large CO2 flux as being sourced by passive gas leakage from a deeply (>4 km) stored magma, whose depressurization, possibly caused by the onset of an effusive eruption on 28 F…
The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study
The complexity of volcano-hosted hydrothermal systems is such that thorough characterization requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterization of the shallow structure of the southwestern Ischia's hydrothermal system. We show that the investigated area is characterized by a structural setting that, although very complex, can be schematized in three sectors, namely, the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structura…
Prospezione geochimica sulle risorse idriche sotterranee e superficiali della Provincia di Palermo: costituenti inorganici maggiori, minori ed in traccia. Risultati preliminari.
First in-situ sensing of volcanic gas plume composition at Boiling Lake (Dominica, West Indies)
Dominica, a small Caribbean island between Martinique (to the South) and Guadeloupe (to the North), is, because of the high number of potentially active volcanic centres,one of the most susceptible sites to volcanic risk in the Lesser Antilles arc. Seven major volcanic centres, active during the last 10ka, are considered likely to erupt again, and one of these is the Valley of Desolation volcanic complex. This is an area of 0.5 km2, located in on SW Dominica, where a number of small explosion craters, hot springs,bubbling pools and fumaroles testify for vigorous and persistent hydrothermal activity. Two main phreatic explosions have been documented in historical time (1880 and 1997), and th…
Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of the volcanic activity
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of di…
Gas emissions from five volcanoes in northern Chile and implications for the volatiles budget of the Central Volcanic Zone
This study performed the first assessment of the volcanic gas output from the Central Volcanic Zone (CVZ) of northern Chile. We present the fluxes and compositions of volcanic gases (H2O, CO2, H2, HCl, HF, and HBr) from five of the most actively degassing volcanoes in this region—Lascar, Lastarria, Putana, Ollague, and San Pedro—obtained during field campaigns in 2012 and 2013. The inferred gas plume compositions for Lascar and Lastarria (CO2/Stot = 0.9–2.2; Stot/HCl = 1.4–3.4) are similar to those obtained in the Southern Volcanic Zone of Chile, suggesting uniform magmatic gas fingerprint throughout the Chilean arc. Combining these compositions with our own UV spectroscopy measurements of …
Geogenic carbon transport through karst hydrosystems of Greece
The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al, 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tecto…
Fumarolic tremor and geochemical signals during a volcanic unrest
Fumaroles are known to generate seismic and infrasonic tremor, but this fumarolic tremor has so far received little attention. Seismic records taken near the Pisciarelli fumarole, a vigorously degassing vent of the restless Campi Flegrei volcano in Italy, reveal a fumarolesourced tremor whose amplitude has recently intensified. We use independent geochemical evidence to interpret this fumarolic tremor for the first time quantitatively. We find that the temporal increase in fumarolic tremor RSAM (real-time seismic-amplitude measurement) quantitatively correlates with increases in independent proxies of fumarole activity, including the CO2concentrations in the fumarole's atmospheric plume, th…
Sniffing for Clues to the Dinosaurs Demise: Measurement of Osmium Isotope Compositions and Platinum Group Element Abundances in Volcanic Emissions
Elevated CO2 emissions during magmatic-hydrothermal degassing at Awu Volcano, Sangihe Arc, Indonesia
Awu is a remote and little known active volcano of Indonesia located in the northern part of Molucca Sea. It is the northernmost active volcano of the Sangihe arc with 18 eruptions in less than 4 centuries, causing a cumulative death toll of 11,048. Two of these eruptions were classified with a Volcanic Explosivity Index (VEI) of 4. Since 2004, a lava dome has occupied the centre of Awu crater, channelling the fumarolic gas output along the crater wall. A combined Differential Optical Absorption Spectroscopy (DOAS) and Multi-component Gas Analyzer System (Multi-GAS) study highlight a relatively small SO2 flux (13 t/d) sustained by mixed magmatic&ndash
Chapter 16 Pre-eruptive vapour and its role in controlling eruption style and longevity at Soufrière Hills Volcano
We use volatiles in melt inclusions and nominally anhydrous phenocrysts, with volcanic gas flux and composition, and textural analysis of mafic inclusions to estimate the mass of exsolved vapour prior to eruption at Soufriere Hills Volcano (SHV). Pre-eruptive andesite coexists with exsolved vapour comprising 1.6–2.4 wt% of the bulk magma. The water content of orthopyroxenes indicates a zone of magma storage at pressures of approximately 200–300 MPa, whereas melt inclusions have equilibrated at shallower pressures. Inclusions containing >3 wt% H2O are enriched in CO2, suggesting flushing with CO2-rich gases. Intruding mafic magma contains >8 wt% H2O at 200–300 MPa. Rapid quenching is accompa…
Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/S-total>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by…
Spatio-temporal changes in degassing behavior at Stromboli volcano derived from two co-exposed SO2 camera stations
Improving volcanic gas monitoring techniques is central to better understanding open-vent, persistently degassing volcanoes. SO2 cameras are increasingly used in volcanic gas studies, but observations are commonly limited to one single camera alone viewing the volcanic plume from a specific viewing direction. Here, we report on high frequency (0.5 Hz) systematic measurements of the SO2 flux at Stromboli, covering a 1-year long observation period (June 2017-June 2018), obtained from two permanent SO2 cameras using the same automated algorithm, but imaging the plume from two different viewing directions. Our aim is to experimentally validate the robustness of automatic SO2 camera for volcano …
Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy)
Abstract This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and…
New clues on the contribution of Earth's volcanism to the global mercury cycle
Soil and groundwater discharge of magmatic CO2 and He on south western Ischia Island (Central Italy)
Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily)
Major and trace element concentrations were determined in two lichen species (Parmelia conspersa and Xanthoria calcicola) from the island of Vulcano and all around Mt. Etna. In both areas, the average concentrations of Al, Ca, Mg, Fe, Na, K, P and Ti are substantially greater than those of other elements. Several elements (Br, Pb, Sb, Au, Zn, Cu) resulted enriched with respect to the local substrates. The Br and Pb enrichment factors turned out to be the highest among those calculated in both areas. Data indicate that mixing between volcanic and automotive-produced particles clearly explains the range of Pb/Br shown by lichen samples. Sb is also enriched, revealing a geogenic origin at Vulc…
Quantitative models of hydrothermal fluid–mineral reaction: The Ischia case
Abstract The intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Ep…
Sulfur Degassing From Steam-Heated Crater Lakes: El Chichón (Chiapas, Mexico) and Víti (Iceland)
The composition of the gases released by El Chichón (Chiapas, Mexico) and Víti (Askja volcano, Iceland) volcanic lakes is examined by Multi-GAS for the first time. Our results demonstrate that H2S and SO2 are degassed by these pH 2–3 lakes. We find higher CO2/H2S and H2/H2S ratios in the lakes' emissions (31–5,685 and 0.6–35, respectively) than in the fumarolic gases feeding the lakes (13–33 and 0.08–0.5, respectively), evidencing that only a fraction (0.2–5.4% at El Chichón) of the H2S(g) contributed by the subaquatic fumaroles ultimately reaches the atmosphere. At El Chichón, we estimate a H2S output from the crater lake of 0.02–0.06 t/day. Curiously, SO2 is also detected at trace levels …
Early detection of volcanic hazard by lidar measurement of carbon dioxide
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidars has been undertaken at ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. A differential absorption lid…
Helium-carbon isotopic composition of thermal waters from Tunisia
Halogens in Mount Etna volcanic gas plume: insights into degassing processes
Exploring the explosive‐effusive transition using permanent ultra‐violet cameras
Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here we combine results from permanent ultraviolet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Stromboli's August–November 2014 effusive eruption. We show that, in the 2 months prior to effusion onset, the SO2 flux levels are 2 times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets produced by strombolian explosions being more frequent and…
Compositional measurement of gas emissions in the Eastern Carpathians (Romania) using the Multi-GAS instrument: Approach for in situ data gathering at non-volcanic areas
The Multi-GAS, a robust and low-cost instrument for real-time in-situ gas measurements, has previously been used mainly for compositional measurements of active volcanic plumes. Here we demonstrate novel use of a specially designed Multi-GAS instrument adapted to low temperature degassing areas. We performed compositional measurements in the Eastern Carpathians on dry and bubbling gas emissions using a sensor kit that allows measurement of CO2, CH4 and H2S (three major components of low-temperature hydrothermal/volcanic manifestations). Our results demonstrate good agreement between Multi-GAS measurements and independently obtained CO2 concentrations from gas chromatography. We also provide…
Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest
Abstract This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field. We show that the CO2 flux from the main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor > 3 since 2012, reaching in 2018–2019 levels (>600 tons/day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening of the degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detec…
UV camera measurements of fumarole field degassing (La Fossa crater, Vulcano Island)
Reaction path models of magmatic gas scrubbing
Gas-water-rock reactions taking place within volcano-hosted hydrothermal systems scrub reactive, water-soluble species (sulfur, halogens) from the magmatic gas phase, and as such play a major control on the composition of surface gas manifestations. A number of quantitative models of magmatic gas scrubbing have been proposed in the past, but no systematic comparison of model results with observations from natural systems has been carried out, to date. Here, we present the results of novel numerical simulations, in which we initialized models of hydrothermal gas-water-rock at conditions relevant to Icelandic volcanism. We focus on Iceland as an example of a "wet" volcanic region where scrubb…
Fluid/Melt Partition Coefficients Of Halogens In Basaltic Melt
Major-ion bulk deposition around an active volcano (Mt. Etna, Italy)
Bulk atmospheric deposition of major cations (Na, K, Ca, Mg) and anions (Cl, F, SO4) were measured at 15 sites around an active volcano, Mount Etna, from 2001 to 2003. Their composition indicates several natural sources, among which deposition of plume-derived volcanogenic gas compounds is prevalent for F, Cl and S. Plume-derived acidic compounds are also responsible for the prevailing acidic composition of the samples collected on the summit of the volcano (pH in the 2.45–5.57 range). Cation species have complex origin, including deposition of plume volcanogenic ash and aerosols and soil-dust wind re-suspension of either volcanic or carbonate sedimentary rocks. Variation of the deposition …
Preliminary investigation into temporal variation of volcanic ash adherent water-soluble components at Stromboli volcano during 2004-2009 eruptive activity
A change in the chemical compositions of volcanic gases is one of the noticeable phenomena that frequently occurs prior to an eruption. Tephra in plumes can absorb and thereby rapidly deposit volatiles including sulphur, halogen and metal species. These may then be leached (e.g. by rainfall), potentially releasing heavy loads into soils and water bodies. Their analysis is a suitable supplement for remote monitoring of volcanic gases from inaccessible volcanoes. Freshly fallen ashes of the eruptive activity from 2004 to 2009 at Stromboli volcano were sampled, leached and analysed for major and trace elements. This study is aimed at determining the causes of the compositional variations of th…
Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study.
Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path mode…
In-situ characterisation of aerosol and gases (SO 2 , HCl, ozone) in Mt Etna volcano plume
International audience; We present findings from a measurement campaign that deployed a range of in-situ real-time atmospheric measurement techniques to characterise aerosols and gases in Mt Etna plume in October 2013. The LOAC (Light Optical Aerosol Counter) instrument for size-resolved particle measurements was deployed alongside two Multi-Gas instruments (measuring SO 2 , H2S, HCl, CO 2) and an ozone sensor. Measurements were performed at the summit craters (in cloudy-and non-cloudy conditions) and in grounding downwind plume on the volcano flank. These high frequency measurements (acid gases: 1 to 0.1 Hz, aerosol: 0.1 Hz) provide a detailed in-situ dataset for time-resolved plume charac…
Magmatic gas leakage at Mt. Etna (Sicily,Italy): Relationships with the vocano-tectonic structures ,the hydrological pattern and the eruptive activity
Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes
Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential …
Reply to the “Comment by Delmelle et al. (2013) on ‘Scavenging of sulfur, halogens and trace metals by volcanic ash: The 2010 Eyjafjallajökull eruption’ by Bagnato et al. (2013)”
Abstract With this short communication we address the principal issues raised by Delmelle et al. (2014) in relation to the work of Bagnato et al. (2013) concerning the 2010 eruption of Eyjafjallajokull, Iceland. The principal conclusions of the work of Bagnato et al. (2013) include the observation that protracted gas-aerosol interaction in the plume promotes selective leaching of cation species from ash, with alkalis and Ca (and, among trace elements, Zn and Cu) being more rapidly re-mobilized (and transferred to soluble surface salts) relative to more inert elements (Mg, Ti). They also observed that adsorption onto ash surfaces is a major atmospheric sink of volcanic acidic gases, with 282…
The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio
Abstract The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO 2 /SO 2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO 2 /SO 2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of …
Forecasting Etna eruptions by real-time observation of volcanic gas composition
It is generally accepted, but not experimentally proven, that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna's shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and triggering of eruption. The advent of real-ti…
In-situ analysis of the gas-emissions of the Eastern Carpathians (Romania) using the Multi-Gas instrument
The Multi-Gas instrument is an important tool for the investigations and monitoring of volcanic systems world- wide, because it can be easily placed on a volcano and can provide real-time data on the compositional changes of the fluids that are released (Aiuppa et al., 2005, Shinohara et al., 2005). We used a specially designed Multi-Gas to gather in situ compositional information about low-temperature, CO2-rich gases, emerging from different manifestations like dry gas emissions (mofettes), bubbling pools and springs. The instrument is equipped with two IR sensors for CO2 (0-100%) and CH4 (0-7%) and one electrochemical sensor for H2S (0-200 ppm). The Multi-Gas was used during several field…
First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei
The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesti…
Volcanic CO2 tracks the incubation period of basaltic paroxysms
Description
Caratterizzazione Geochimica ed Isotopica e valutazione della qualità delle acque superficiali e sotterranee campionate nel foglio 549 MURAVERA.
Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: Evidence from La Fossa crater fumarolic field, Vulcano Island.
Magmatic gas flux emissions from Gorelyi volcano, Kamchatka, and implications for volatile recycling in the NW Pacific
The Kamchatka peninsula, in the north-western part of the Pacific ’Ring of Fire’, is one of the most active volcanic realms on Earth, with 29 historically erupting volcanoes along its 700 km-long Eastern Volcanic Belt (EVB). This notwithstanding, volatile input and output fluxes along this arc sector have remained poorly characterised until very recently. We here report on the very first assessment of volatile flux emissions from Gorelyi, a large (25 km3, 1830 m high) and most active shield-like Holocene volcano located on the southern segment of the Kamchatka EVB. By combing results from a variety of in situ and remote sensing techniques (MultiGAS, filter packs, and UV camera), we determine the…
Variation of H2O/CO2and CO2/SO2ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy
[1] We applied the Multi-GAS technique to measure compositions of the volcanic plumes continuously discharged from summit craters of Voragine, Northeast and Bocca Nuova at Mount Etna, in an attempt to estimate compositions of the source volcanic gases. The estimated CO2/SO2 and H2O/CO2 ratios of the volcanic gases show a large variation ranging from 0.6 to 30 and from 1 to 18, respectively. This variability overlaps with the compositional range of dissolved volatiles in melt inclusions and their coexisting bubbles in a magma chamber and can be caused by the low-pressure degassing of a magma with variable bubble content ranging from 0.3 to 15 wt.%. The variable bubble content in the magma is…
Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO 2 /S T ratios reveal dual source of carbon in arc volcanism
Abstract Some 300–600 Tg of volatiles are globally vented each year by arc volcanism. Such arc gas emissions have contributed to past and present-day evolution of the Earth atmosphere and climate by recycling mineral-bound volatiles subducted along active slabs. Carbon dioxide (CO 2 ) and total sulphur (S T ) are, after water, the major components of volcanic arc gases. Understanding their relative abundances (e.g., the CO 2 /S T ratio) in arc volcanic gases is important to constrain origin and recycling efficiency of these volatiles along the subduction factory, and to better constrain the global arc volcanic CO 2 flux. Here, we review currently available information on global variations o…
Hydrologic and geochemical survey of the lake ‘‘Specchio di Venere’’ (Pantelleria island, Southern Italy)
Hydrological and geochemical studies performed on Lake Specchio di Venere on Pantelleria island (Italy) indicate that this endorheic basin has been formed through upwelling of the water table, and that it is continuously fed by the thermal springs situated on its shores. The lake is periodically stratified both thermally and in salinity, albeit this stratification is rather unstable over time, since meteorological events such as strong rain or wind can determine the mixing of its waters. Periodical analyses of the lake water chemistry show large variations of the salt content due to the yearly evaporation-rain dilution cycle. These processes are also responsible for the saline stratificatio…
Chlorine Partitioning Between a Basaltic Melt and H2O-CO2 Fluids at Mount Etna
Partitioning experiments between a basaltic melt from Mt. Etna and a low-density hydrous fluid or vapor containing H(2)O or H(2)O-CO(2) were performed at 1200-1260 degrees C, at pressures between 1 and 200 MPa, either near the nickel-nickel oxide (NNO) buffer or at two log units above it (NNO + 2), and with different chloride concentrations. Most of the experiments were done at chloride-brine-undersaturated conditions, although at the highest Cl concentrations explored brine saturation might have been reached. The average partition coefficients (D(Cl)(fluid/melt)) over the range of Cl concentrations were derived on a weight basis by plotting the calculated concentrations of Cl in the fluid …
Petrological and noble gas features of Lascar and Lastarria volcanoes (Chile): Inferences on plumbing systems and mantle characteristics
Lascar (5592 m a.s.l.) and Lastarria (5697 m a.s.l.) are Chilean active stratovolcanoes located in the Central Volcanic Zone (CVZ; 16°S to 28°S) that have developed on top of a 71 km thick continental crust. Independently of the similarities in their Plinian/Vulcanian eruptive styles, their complex magmatic feeding structures and the origins of their magmatic fluids still necessitate constraints in order to improve the reliability of geochemical monitoring. Here we investigate the petrography, bulk-rock chemistry, and mineral chemistry in products from the 1986–1993 explosive eruptive cycle at Lascar and from several Holocene eruptive sequences at Lastarria. These data are integrated with m…
Emission of Bromine and Iodine from Mt. Etna volcano
Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr(-1) and 0.01 kt yr(-1) for Br and I, respectively, from April to October 2004, from which we estimate global Br and I flu…
Volcanic gas monitoring of quiescent volcanoes using permanent Multi-GAS networks
The Multi-component Gas Analyzer System (Multi-GAS) has recently consolidated as a standard technique for the nearly real-time in-situ observation of major volcanogenic components (H2O, CO2, SO2, H2S,H2) in volcanic gas plumes. The Multi-GAS has been initially operated at open-vent volcanoes, where it has revealed ideal for long-term continuous observations at for instance Etna and Stromboli volcanoes in Italy, therein paving the way to the acquisition of unprecedentedly long and continuous volcanic gas time-series. We here initially review the present state of the expanding network of permanent Multi-GAS instruments, now covering about 10 volcanoes worldwide. We then specifically focus on …
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation …
Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano
Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vents exhibiting Strombolian explosions emit low to negligible passive fluxes and are CO2-dominated, even during passive degassing. We propose a model for the conduit system based on contrasting rheologi…
Fluid geochemistry of the San Vicente geothermal field (El Salvador)
The volcano Chichontepeque (San Vicente) is one of the nine recent volcanoes making up the El Salvador sector of the WNW-ESE-trending active Central American volcanic belt. Thermal activity is at present reduced to a few thermal springs and fumaroles. The most important manifestations (Agua Agria and Los Infernillos Ciegos) are boiling springs and fumaroles located on the northern slope of the volcano (850 m a.s.l.) along two radial faults. The chloride acid waters of the Los Infernillos area are partly fed by a deep hydrothermal aquifer (crossed at 1100–1300 m by a geothermal exploration well), which finds a preferential path to the surface through the radial fault system. C02 is the most …
Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy
[1] Volcanic gas emissions from fumaroles on the rim of La Fossa crater, Vulcano Island, Italy, were measured simultaneously using direct sampling (for H2O, CO2, total sulfur, HCl and HF), filter packs (for SO2, HCl, HF) and short-path active-mode FTIR measurements (for H2O, CO2, SO2, HCl and HF) in an intercomparison study in May 2002. The results show that Cl/F ratios were in good agreement between all three methods, and that FTIR and direct sampling determined comparable proportions of CO2 and H2O. Amounts of total S observed in direct sampling data were approximately double the amounts of SO2 measured with filter packs and FTIR. This difference could be attributed either to the fact FTI…
Leachate analyses of volcanic ashes from Stromboli volcano: A proxy for the volcanic gas plume composition?
[1] Many volcanoes show a change in chemical composition of the gas phase prior to periods of eruptive activity. Fine-grained tephra erupted from active vents and transported through volcanic plumes can adsorb, and therefore rapidly scavenge, volatile elements such as sulfur, halogens, and metal species in the form of soluble salts adhering to ash surfaces. Analysis of such water-soluble surface materials is a suitable supplement for remote monitoring of volcanic gases at inaccessible volcanoes. In this work, ash samples of the 2004 to 2009 eruptive activity of Stromboli volcano were sampled, leached, and analyzed for major and trace elements. Data analysis and interpretation was focused on…
Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle
[1] Since the second half of the 1990s, the eruptive activity of Mount Etna has provided evidence that both explosive and effusive eruptions display periodic variations in discharge and eruption style. In this work, a multiparametric approach, consisting of comparing volcanological, geophysical, and geochemical data, was applied to explore the volcano's dynamics during 2009–2011. In particular, temporal and/or spatial variations of seismicity (volcano-tectonic earthquakes, volcanic tremor, and long-period and very long period events), ground deformation (GPS and tiltmeter data), and geochemistry (SO2 flux, CO2 flux, CO2/SO2 ratio) were studied to understand the volcanic activity, as well as…
Thematic vent opening probability maps and hazard assessment of small-scale pyroclastic density currents in the San Salvador volcanic complex (El Salvador) and Nejapa-Chiltepe volcanic complex (Nicaragua)
The San Salvador volcanic complex (El Salvador) and Nejapa-Chiltepe volcanic complex (Nicaragua) have been characterized by a significant variability in eruption style and vent location. Densely inhabited cities are built on them and their surroundings, including the metropolitan areas of San Salvador (∼2.4 million people) and Managua (∼1.4 million people), respectively. In this study we present novel vent opening probability maps for these volcanic complexes, which are based on a multi-model approach that relies on kernel density estimators. In particular, we present thematic vent opening maps, i.e., we consider different hazardous phenomena separately, including lava emission, small-scale…
Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone
Abstract Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO 2 flux of 15.3 ± 2.3 kg s − 1 (1325-ton day − 1 ) at Sabancaya and of 11.4 ± 3.9 kg s − 1 (988-ton day − 1 ) at Ubinas using scanning ultraviolet spectr…
Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)
Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, weanalyzedmajor element composition and volatile content of melt inclusions fromsomestratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2–3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion…
The geological CO2degassing history of a long-lived caldera
The majority of the ~100 Holocene calderas on Earth host vigorously active hydrothermal systems, the heat and volatile budgets of which are sustained by degassing of deeply stored magma. Calderas may thus contribute a nontrivial, although poorly quantified, fraction of the global budget of magmatic volatiles such as CO2. Here we use original isotopic a d petrological results from Campi Flegrei volcano, Italy, to propose that hydrothermal calcites are natural mineral archives for the magmatic CO2 that reacted with reservoir rocks during the geological history of a caldera. We show that Campi Flegrei calcites, identified in core samples extracted from 3-km-deep geothermal wells, formed at iso…
Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross-sections of the atmospheric…
The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy
Abstract This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas–water–rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 μg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at …
Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: Volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions
International audience; Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna, in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable dega…
Active degassing of crustal CO2 in areas of tectonic collision: A case study from the Pollino and Calabria sectors (Southern Italy)
Carbon dioxide (CO2) is released from the Earth’s interior into the atmosphere through both volcanic and non-volcanic sources in a variety of tectonic settings. A quantitative understanding of CO2 outgassing fluxes in different geological settings is thus critical for decoding the link between the global carbon budget and different natural processes (e.g., volcanic eruption and earthquake nucleation) and the effects on the climate evolution over geological time. It has recently been proposed that CO2 degassing from non-volcanic areas is a major component of the natural CO2 emission budget, but available data are still sparse and incomplete. Here, we report the results of a geochemical surve…
Gas Leakage From Shallow Ponding Magma and Trapdoor Faulting at Sierra Negra Volcano (Isabela Island, Galápagos)
We report on new volcanic gas composition results acquired in October 2017 at Minas de Azufre, a persistent fumarolic field topping the resurgent Sierra Negra caldera, in the Galápagos archipelago. Our results indicate that the Minas de Azufre fumaroles are moderately hydrous (52–64 mol.% H2O) and rich in CO2 (35–46 mol.%), with total sulfur (ST) being 21–35 times less abundant than CO2. SO2, the most abundant S species, is released at an average rate of 19 ± 9 tons/day. Using a volatile saturation model that provides the composition of magmatic gases at equilibrium with western Galápagos basaltic melt (48 wt. % SiO2) in the 400–0.1 MPa pressure range, we infer that Minas de Azufre fumaroli…
The heterogeneity of the Mexican lithospheric mantle: Clues from noble gas and CO2 isotopes in fluid inclusions
The abundance of mantle-derived rocks and lavas, in combination with its tectonic evolution, render Mexico a perfect laboratory to investigate the chemical and the isotopic heterogeneity of the lithospheric mantle. New data on the composition of noble gases and CO2in Mexican mantle xenoliths and lavas is reported. Our samples consist of six ultramafic nodules from the Durango Volcanic Field (DVF) and the San Quintin Volcanic Field (SQVF), monogenetic complexes belonging to the Mexican Basin and Range province; and four lavas from the Sierra Chichinautzin (SCN), a Quaternary monogenetic volcanic field located in the Mexican volcanic arc. Ne and Ar isotopes in fluid inclusions reveal mixing b…
Vulcamera: a program for measuring volcanic SO2 using UV cameras
We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2&nbsp; fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations.<br />
Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano
We present the results of a study of volcanic gases at Soufriere Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640.2750 t/d and 84.266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of e…
The use of tree-rings and foliage as an archive of volcanogenic cation deposition.
Tree cores (Pinus nigra ssp. laricio) and leaves (Castanea sativa) from the flanks of Mount Etna, Sicily were analysed by ICP-MS to investigate whether volcanogenic cations within plant material provide an archive of a volcano's temporal and spatial depositional influence. There is significant compositional variability both within and between trees, but no systematic dendrochemical correlation with periods of effusive, explosive or increased degassing activity. Dendrochemistry does not provide a record of persistent but fluctuating volcanic activity. Foliar levels of bioaccumulated cations correspond to modelled plume transport patterns, and map short-term volcanic fumigation. Around the fl…
Mercury emissions from active volcanic areas of Italy
Environmental impact of magmatic fluorine emission in the Mt. Etna area
The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere's most prominent natural source of fluorine. Of the ∼ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6 ± 2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ∼ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We he…
Active geodynamic in the central Mediterranean: Transfer of mantle fluids across the north-eastern Sicily
Sources, size distribution, and downwind grounding of aerosols from Mount Etna
The number concentrations and size distributions of aerosol particles >0.3 mm diameter were measured at the summit of Mount Etna and up to 10 km downwind from the degassing vents during July and August 2004. Aerosol number concentrations reached in excess of 9 106 L1 at summit vents, compared to 4–8 104 L1 in background air. Number concentrations of intermediate size particles were higher in emissions from the Northeast crater compared to other summit crater vents, and chemical composition measurements showed that Northeast crater aerosols contained a higher mineral cation content compared to those from Voragine or Bocca Nuova, attributed to Strombolian or gas puffing activity within the ve…
Ultraviolet imaging of volcanic plumes: A new paradigm in volcanology
Ultraviolet imaging has been applied in volcanology over the last ten years or so. This provides considerably higher temporal and spatial resolution volcanic gas emission rate data than available previously, enabling the volcanology community to investigate a range of far faster plume degassing processes than achievable hitherto. To date, this has covered rapid oscillations in passive degassing through conduits and lava lakes, as well as puffing and explosions, facilitating exciting connections to be made for the first time between previously rather separate sub-disciplines of volcanology. Firstly, there has been corroboration between geophysical and degassing datasets at â1 Hz, expeditin…
Dynamics of outgassing and plume transport revealed by proximal Unmanned Aerial System (UAS) measurements at Volcán Villarrica, Chile
Volcanic gas emissions are intimately linked to the dynamics of magma ascent and outgassing, and, on geological timescales, constitute an important source of volatiles to the Earth's atmosphere. Measurements of gas composition and flux are therefore critical to both volcano monitoring and to determining the contribution of volcanoes to global geochemical cycles. However, significant gaps remain in our global inventories of volcanic emissions, (particularly for CO2, which requires proximal sampling of a concentrated plume) for those volcanoes where the near‐vent region is hazardous or inaccessible. Unmanned Aerial Systems (UAS) provide a robust and effective solution to proximal sampling of …
Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)
Abstract The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO 2 and the contribution of aqueous transport to the overall metal discharge of the volcano. We show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO 2 -charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paterno) and E (Zafferana) volcano flanks, where out …
Mount Etna, the major point source of metals in the Mediterranean basin: impact on atmospheric precipitation
Lidar detection of carbon dioxide in volcanic plumes
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high s…
Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia
Abstract Tunisia has numerous thermo-mineral springs. Previous studies have shown that their chemical composition and occurrence are strongly influenced by the regional geology. However little work has been done so far to study the isotopic composition of volatiles associated with these geothermal manifestations. Here, we report on the results of an extensive survey of both natural hot springs and production wells across Tunisia, aimed at investigating the spatial distribution of thermal fluids' geochemical characteristics and He–C isotopic composition. The chemistry of the analyzed samples highlights the heterogeneity of the water mineralization processes in Tunisia, as a consequence of th…
Tunable diode laser measurements of hydrothermal/volcanic CO&lt;sub&gt;2&lt;/sub&gt; and implications for the global CO&lt;sub&gt;2&lt;/sub&gt; budget
Abstract. Quantifying the CO2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestati…
Forecasting Etnean eruptions by real-time observations of volcanic gas composition.
It is generally accepted but not experimentally proven that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2 and SO2 in volcanic gases from Mt. Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detecting the pre-eruptive degassing of uprising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna’s shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and eruption triggering. The advent of real-time observ…
Environmental impact of magmatic fluorine emission in the Mt. Etna area
-UniversitA degli Studi di Palermo, Italy -Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo - Unione Europea, Fondo Sociale Europeo
A CO2-gas precursor to the March 2015 Villarrica volcano eruption
We present here the first volcanic gas compositional time-series taken prior to a paroxysmal eruption of Villarrica volcano (Chile). Our gas plume observations were obtained using a fully autonomous Multi-component Gas Analyser System (Multi-GAS) in the 3 month-long phase of escalating volcanic activity that culminated into the 3 March 2015 paroxysm, the largest since 1985. Our results demonstrate a temporal evolution of volcanic plume composition, from low CO$_2$/SO$_2$ ratios (0.65-2.7) during November 2014-January 2015 to CO$_2$/SO$_2$ ratios up to ≈ 9 then after. The H$_2$O/CO$_2$ ratio simultaneously declined to <38 in the same temporal interval. We use results of volatile saturatio…
Magmatic gas percolation through the old lava dome of El Misti volcano
International audience; The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock int…
Gas fluxes and compositions of two active volcanoes in Northern Chile: Lascar and Lastarria
The Central Andes Volcanic Zone of northern Chile comprises a ~1200 km long volcanic district extending from the Atacama region on the northe to the Arica and Parinacota region.Lascar and Lastarria are among the most actively degassing volcanoes of the several (more than 30) potentially active in the region. They both host persistent fumarolic fields and generate sustained plumes above the main craters. Here, we report on simultaneous in-situ and remote volcanic gas measurements aimed at obtaining the very first degassing budget for major volatiles released by these fumarolic fields. Using quick deployable scanning DOAS and SO2 camera systems we obtained time-averaged SO2 fluxes of ~ 500 t …
Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study
International audience; Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate;…
Halogen and Sulphur Studies in Volcanic Plumes
Recent advances in ground based ultraviolet remote sensing of volcanic SO2 fluxes
Sweet chestnut (Castanea sativa) leaves as a bio-indicator of volcanic gas, aerosol and ash deposition onto the flanks of Mt Etna in 2005–2007
Sweet chestnut leaves (Castanea sativa) collected from the flanks of Mt Etna volcano in 2005-2007 were analysed by inductively-coupled plasma mass spectrometry to investigate the spatial and temporal variability of element concentrations. The aim of this work was to determine whether these leaves are a bio-indicator for volcanic gas, aerosol and ash deposition and to gain new insights into the environmental effects of quiescent and eruptive volcanic plumes. Results show a positive correlation between sample variability in the concentration of elements in Castanea sativa and enrichment factors of elements in the plume. The spatial and temporal variability of chalcophilic elements (As, Cd, Cu…
Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc
Abstract Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H 2 O, CO 2 , SO 2 and H 2 S in crater rim emissions, coupled with filter-pack determination of SO 2 , halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by…
Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry
Obtaining accurate estimates of the CO2 output from arc volcanism requires a precise understanding of the potential along-arc variations in volcanic gas chemistry, and ultimately of the magmatic gas signature of each individual arc segment. In an attempt to more fully constrain the magmatic gas signature of the Central America Volcanic Arc (CAVA), we present here the results of a volcanic gas survey performed during March and April 2013 at five degassing volcanoes within the Costa Rica-Nicaragua volcanic segment (CNVS). Observations of the volcanic gas plume made with a multicomponent gas analyzer system (Multi-GAS) have allowed characterization of the CO2/SO2-ratio signature of the plumes …
The fumarolic CO2 output from Pico do Fogo volcano (Cape Verde)
The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles' volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (u…
Halogen chemistry in volcanic plumes
Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy
Volcanic-gas monitoring
The environmental impact of volcanoes is closely related to the rates, style and chemistry of their gas emissions (Delmelle, 2003). Monitoring the composition and mass flux of volcanic gases is therefore central to understanding how volcanism impacts our planet, on both global and local scales. There are two main modes of volcanic-gas release on Earth (Chapter 14): (i) the impulsive emission of large quantities of gases during episodic, large-scale volcanic eruptions, and (ii) the far more sluggish, but persistent, passive gas release from quiescent or mildly erupting volcanoes. Characterising the chemical composition of impulsive emissions has remained a challenge, and direct measurements …
Total volatile flux from Mount Etna
[1] The Total Volatile (TV) flux from Mount Etna volcano has been characterised for the first time, by summing the simultaneously-evaluated fluxes of the three main volcanogenic volatiles: H2O, CO2 and SO2. SO2 flux was determined by routine DOAS traverse measurements, while H2O and CO2 were evaluated by scaling MultiGAS-sensed H2O/SO2 and CO2/SO2 plume ratios to the UV-sensed SO2 flux. The time-averaged TV flux from Etna is evaluated at ∼21,000 t·day−1, with a large fraction accounted for by H2O (∼13,000 t·day−1). H2O dominates (≥70%) the volatile budget during syn-eruptive degassing, while CO2 and H2O contribute equally to the TV flux during passive degassing. The CO2 flux was observed to…
Full scale evaluation of atmospheric mercury budget from persistent volcanic degassing
In the recent years, there has been an increase in environmental concerns related to the pollution of many trace metals emitted from volcanic degassing because of their toxicity and long residence times in the earth’s ecosystems. Among volcanogenic trace elements, mercury (Hg) is one of the most environmentally-significant in light of its potential harmful effects on biological systems. At present, however, the global Hg flux from volcanic sources is still poorly known. We report on Hg levels in volcanic plumes and fumaroles that, in combination with sulphur analyses and SO2 flux data, lead to global Hg estimates. We found that mercury transport in the plume is mainly in the gas-phase, as H…
Mercury concentration and speciation in volcanic aquifers: measurements in Italy and Guadeloupe (Lesser Antilles)
Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna
Erratum to: Bull Volcanol (2017) 79: 36DOI 10.1007/s00445-017-1114-zDuring the steps of corrections, the publisher inadvertently changed the author affiliations so that they were no longer correct. The correct information is given below. The publisher regrets this mistake.; International audience; Volcanic gas emission measurements inform predictions of hazard and atmospheric impacts. For these measurements, Multi-Gas sensors provide low-cost in situ monitoring of gas composition but to date have lacked the ability to detect halogens. Here, two Multi-Gas instruments characterized passive outgassing emissions from Mt. Etna’s (Italy) three summit craters, Voragine (VOR), North-east Crater (NE…
Bioindication of volcanic mercury (Hg) deposition around Mt. Etna (Sicily)
Mt. Etna is a major natural source of Hg to the Mediterranean region. Total mercury concentrations, [Hg] tot, in Castanea sativa (sweet chestnut) leaves sampled 7-13km from Etna's vents (during six campaigns in 2005-2011) were determined using atomic absorption spectroscopy. [Hg] tot in C. sativa was greatest on Etna's SE flank reflecting Hg deposition from the typically overhead volcanic plume. [Hg] tot also showed Hg accumulation over the growing season, increasing with leaf age and recent eruptive activity. [Hg] tot in C. sativa was not controlled by [Hg] tot in soils, which instead was greatest on Etna's NW flank, and was correlated with the proportion of organic matter in the soil (% O…
Geochemical mapping of magmatic gas-water-rock interactions in the aquifer of Mount Etna volcano
Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy
We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius.Vesuvius groundwaters are dilute (mean TDS ∼ 2800 mg/L) hypothermal fluids ( mean T = 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, l…
In situ Volcano Monitoring
Abstract During the last couple of decades, volcanology has evolved significantly, allowing for an improved understanding of volcanic processes preceding, accompanying and following eruptive events. Key elements to these achievements are the huge amounts of high quality data being collected by networks of increasingly sensitive instruments deployed at active volcanoes. The diffusion of continuous, precise measurements of: (1) wide-band ground displacement; (2) flux and chemistry of volatile emissions; and (3) the spatio-temporal variations of potential fields (e.g., gravity) now permit imaging the mechanism that controls mass transfer underneath volcanoes to an unprecedented level of detail…
First characterization of Gamkonora gas emission, North Maluku, East Indonesia
Gamkonora is an active volcano capable of intense manifestations that regularly forced thousands of inhabitants to flee their villages. The most extreme eruption, in 1673, was a VEI 5 event that induced pitch-dark environment over the region. Paradoxically, little is known about Gamkonora volcano and here we present the first gas measurement results obtained in September 2018 using a MultiGAS and a scanning DOAS. Results highlight a relatively small but magmatic gas with a CO2/ST of 3.5, in the range of high-temperature gas emissions from Indonesian volcanoes and H2O/SO2, CO2/SO2, H2S/SO2, and H2/SO2 ratios of 135, 5.6, 0.6, and 0.2, respectively. The daily gas emission budget corresponds t…
Geochemistry and isotope composition (Sr, Pb, δ66Zn) of Vulcano fumaroles (Aeolian Islands, Italy)
We present and discuss temperatures, major and trace element gas geochemistry, radiogenic isotopes (Pb, Sr) and the first Zn isotope data of fumarole condensates and altered rocks from the Vulcano fumarolic field. The fumaroles of the La Fossa cone, sampled on 5th May 2015, have temperatures ranging between 233 and 427 °C. They plot compositionally on the mixing trend between the magmatic and hydrothermal end-members defined by previous studies, but are strongly displaced towards the hydrothermal component. Correlations of radiogenic (Sr, Pb) and stable isotopes of Zn with δ13CCO2 and several trace elements of the fumarolic acid condensates support mixing between the above mentioned distinc…
Insights Into the Mechanisms of Phreatic Eruptions From Continuous High Frequency Volcanic Gas Monitoring: Rincón de la Vieja Volcano, Costa Rica
OVSICORI Understanding the trigger mechanisms of phreatic eruptions is key to mitigating the effects of these hazardous but poorly forecastable volcanic events. It has recently been established that high-rate volcanic gas observations are potentially very suitable to identifying the source processes driving phreatic eruptions, and to eventually detecting precursory changes prior to individual phreatic blasts. In February-May 2017, we deployed a Multi-GAS instrument to continuously monitor gas concentrations in the crater lake plume of Rincón de la Vieja, a remote and poorly monitored active volcano in Costa Rica, site of frequent phreatic/phreatomagmatic eruptions. Forty-two phreatic/phreat…
The impact of volcanogenic emissions of major and trace elements at Mt. Etna, Sicily, on precipitation (rain and snow) chemistry
Deep fluid transfer evidenced by surface deformation during the 2014–2015 unrest at Piton de la Fournaise volcano
International audience; Identifying the onset of volcano unrest and providing an unequivocal identification of volcano reawakening remain challenging problems in volcanology. At Piton de la Fournaise, renewal of eruptive activity in 2014–2015, after 41 months of quiescence and deflation, was associated with long-term continuous edifice inflation measured by GNSS. Inflation started on June 9, 2014, and its rate progressively increased through 2015. Inflation onset was rapidly followed by an eruption on June 20–21, 2014, showing that volcano reactivation can be extremely fast, even after long non-eruptive phases. This short-lived eruption involved a shallow source (1.3–1.9 km depth below the …
Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes
Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 μm) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 μm) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearl…
Protocols for UV camera volcanic SO2 measurements
Abstract Ultraviolet camera technology offers considerable promise for enabling 1 Hz timescale acquisitions of volcanic degassing phenomena, providing two orders of magnitude improvements on sampling frequencies from conventionally applied scanning spectrometer systems. This could, for instance enable unprecedented insights into rapid processes, such as strombolian explosions, and non-aliased corroboration with volcano geophysical data. The uptake of this technology has involved disparate methodological approaches, hitherto. As a means of expediting the further proliferation of such systems, we here study these diverse protocols, with the aim of suggesting those we consider optimal. In part…
Gradual caldera collapse at Bardarbunga volcano, Iceland, regulated by lateral magma outflow
Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-square kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014–2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurfac…
Geogenic element behaviour in soil-rainwater interaction at Mt Etna, Sicily: preliminary results
Active volcanoes emit considerable amounts of contaminants such as As, Se and V. Previous studies have shown that the volcanic activity at Mt Etna (Sicily) has a strong influence on local rainwater compositions. However to date, the behaviour of trace elements in the soils around Mt Etna is poorly understood. 4-hr batch experiments have been performed with 1:5 soil solutions of air-dried soil (fraction <2 mm) and synthetic (acid) rainwater (using either deionized water with a pH of ~6 or a ~500 ppm of sulphuric acid solution with a pH of ~2). In general trace element concentrations are more enriched in soil solutions with low pH (e.g. enrichment factor (EF) acid compared to neutral soil sol…
Do Volcanic Eruptions Solve Global Atmospheric Mercury Pollution?
Besides human activities, volcanoes also introduce significant quantities of potentially harmful chemical compounds into the environment, mainly in the forms of gases and particles. High-temperature emissions from persistently degassing volcanoes are a known source of trace metal emissions to the atmosphere which may have important environmental consequences. Among these metals, mercury (Hg) is of particular interest since it is a toxic volatile metal found at elevated concentrations in remote regions of the world. Many natural Hg pathways include a recycled component of anthropogenic material. The anthropogenic contribution to the global atmospheric Hg budget is now well constrained, with …
First observational evidence for the CO2-driven origin of Stromboli’s major explosions
Pressurization vs. flushing in the modelling of volcanic gases at basaltic volcanoes
When modelling the composition of chemical gases released at basaltic volcanoes, two end-member processes can be quantitatively constrained by means of thermochemical techniques: closed-system magma degassing or, alternatively, the ascent of gas-bubbles, separated from the reservoir melt at some depth and flushing through the surrounding melt up to surface. In the first scenario, the ascent of volatile-rich (bubbles+melt) magmas from the reservoir is followed by gas/melt separation and fast ascent of the gas phase without any further re-equilibration with the residual melt filling the shallower conduit system. The features of this mechanism must be realized within the lumped approximation i…
Reactive halogen chemistry in volcanic plumes
[1] Bromine monoxide (BrO) and sulphur dioxide (SO2) abundances as a function of the distance from the source were measured by ground-based scattered light Multiaxis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the volcanic plumes of Mt. Etna on Sicily, Italy, in August–October 2004 and May 2005 and Villarica in Chile in November 2004. BrO and SO2 spatial distributions in a cross section of Mt. Etna's plume were also determined by Imaging DOAS. We observed an increase in the BrO/SO2 ratio in the plume from below the detection limit near the vent to about 4.5 × 10−4 at 19 km (Mt. Etna) and to about 1.3 × 10−4 at 3 km (Villarica) distance, respectively. Additional attempts were …
Dynamics of mild strombolian activity on Mt. Etna
Abstract Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈ 27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈ 0.1 to ≈ 14 kg per event, with corresponding total gas masses of ≈ 0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measureme…
The structure of a hydrothermal system from an integrated geochemical, geophysical and geological approach: the Ischia Island case study
The complexity of volcano-hosted hydrothermal systems is such that thorough characterisation requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterisation of the shallow structure of the south-western Ischia’s hydrothermal system. We show that the investigated area is characterised by a structural setting that, although very complex, can be schematised in three sectors, namely the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structura…
Correlation of oscillatory behaviour in Matlab using wavelets
Here we present a novel computational signal processing approach for comparing two signals of equal length and sampling rate, suitable for application across widely varying areas within the geosciences. By performing a continuous wavelet transform (CWT) followed by Spearman?s rank correlation coefficient analysis, a graphical depiction of links between periodicities present in the two signals is generated via two or three dimensional images. In comparison with alternate approaches, e.g., wavelet coherence, this technique is simpler to implement and provides far clearer visual identification of the inter-series relationships. In particular, we report on a Matlab? code which executes this tec…
First gas and thermal measurements at the frequently erupting Gamalama volcano (Indonesia) reveal a hydrothermally dominated magmatic system
Abstract The first gas and thermal measurements at the summit of the Gamalama volcano indicate that the system is dominated by hydrothermal processes. This is highlighted by the prevalence of H2S over SO2 (H2S/SO2 = 2–8), a high CO2/SO2 ratio (76–201), and a low heat transfer (3.0 MW) to the surface. A relative variation in gas composition is observed along the degassing fracture zone, possibly due to partial S scrubbing. Despite this surface hydrothermal signature, the system exhibits high gas equilibrium temperatures (425–480 °C), indicating that fluids are not exclusively derived from a boiling hydrothermal aquifer, but also sourced by cooling and crystallizing basaltic magma at deep tha…
Intra-eruptive gas emissions and shallow magma storage after the 2007 summit caldera collapse of Piton de la Fournaise, Reunion island
Halogen chemistry in a volcanic plume
Environmental impact of trace metals emission at Mt. Etna area (Italy): preliminary estimates of trace metals in bulk-deposition
Volcanic emissions of mercury to the atmosphere
A golden era for volcanic gas geochemistry?
The exsolution, rise, expansion, and separation of volatiles from magma provide the driving force behind both effusive and explosive volcanic eruptions. The field of volcanic gas geochemistry therefore plays a key role in understanding volcanism. In this article, we summarize the most important findings of the past few decades and how these shape today’s understanding of volcanic degassing. We argue that the recent advent of automated, continuous geochemical monitoring at volcanoes now allows us to track activity from unrest to eruption, thus providing valuable insights into the behavior of volatiles throughout the entire sequence. In the next 10 years, the volcanological community stands t…
Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB
Co-auteur étranger; International audience; Located on Halmahera island, Dukono is among the least known volcanoes in Indonesia. A compilation of the rare available reports indicates that this remote and hardly accessible volcano has been regularly in eruption since 1933, and has undergone nearly continuous eruptive manifestation over the last decade. The first study of its gas emissions, presented in this work, highlights a huge magmatic volatile contribution into the atmosphere, with an estimated annual output of about 290 kt of SO2, 5000 kt of H2O, 88 kt of CO2, 5 kt of H2S and 7 kt of H2. Assuming these figures are representative of the long-term continuous eruptive activity, then Dukon…
Exploring the explosive-effusive transition using permanent ultraviolet cameras
Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here, we combine results from permanent ultra-violet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Stromboli's August-November 2014 effusive eruption. We show that, in the two months prior to effusion onset, the SO2 flux levels are two times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets, produced by strombolian explosions being more frequ…
Evaluation of the environmental impact of volcanic emissions from the chemistry of rainwater: Mount Etna area (Sicily)
Abstract The S, halogen and NO 3 contents of rainwater samples from the Etnean area were studied in order to define the environmental impact of plume emissions on the local environment. Samples, collected on a network of 11 bulk rain gauges, show significant variability in anion content, which can be ascribed to different meteorological and environmental conditions at each sampling site and to a variable distance from the different source areas. Data analysis suggests that S, F, Cl and Br are mainly magma-derived, whereas NO 3 mainly originates from anthropogenic sources. Samples collected from sites close to craters display considerable temporal variability, with increased anion concentrat…
Total (fumarolic + diffuse soil) CO2 output from Furnas volcano
Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO2) release by diffuse degassing and fumaroles. While the diffusive CO2 output has long (since the early 1990s) been characterized by soil CO2 surveys, no information is presently available on the fumarolic CO2 output. Here, we performed (in August 2014) a study in which soil CO2 degassing survey was combined for the first time with the measurement of the fumarolic CO2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Villag…
Gas emission strength and evolution of the molar ratio of BrO/SO2in the plume of Nyiragongo in comparison to Etna
Airborne and ground-based differential optical absorption spectroscopy observations have been carried out at the volcano Nyiragongo (Democratic Republic of Congo) to measure SO2 and bromine monoxide (BrO) in the plume in March 2004 and June 2007, respectively. Additionally filter pack and multicomponent gas analyzer system (Multi-GAS) measurements were carried out in June 2007. Our measurements provide valuable information on the chemical composition of the volcanic plume emitted from the lava lake of Nyiragongo. The main interest of this study has been to investigate for the first time the bromine emission flux of Nyiragongo (a rift volcano) and the BrO formation in its volcanic plume. Mea…
Geochemical monitoring of groundwaters (1998-2001) at Vesuvius volcano (Italy)
This work presents the results of hydrogeochemical studies carried out at Vesuvius during the period May 1998-December 2001, mostly focusing on compositional time variations observed during this time. Based on their chemistry, groundwater samples are distinguished into two groups, 1 and 2, representative of water circulation in the southern and northern sectors of the volcano, respectively. Waters from group 1 are typically more acidic, warmer, and more saline than those of group 2. They also have higher CO2 and CH4 contents, attributed to enhanced input of deep-rising volatiles and prolonged water-rock interactions. Time-series highlight the fairly constant chemical composition of the enti…
The environmental impact of magmatic fluorine emissions in the Mt.Etna area.
The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations
Abstract. Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chlori…
The bridge volcanic LIdar-BILLI: A review of data collection and processing techniques in the Italian most hazardous volcanic areas
Volcanologists have demonstrated that carbon dioxide (CO2) fluxes are precursors of volcanic eruptions. Controlling volcanic gases and, in particular, the CO2 flux, is technically challenging, but we can retrieve useful information from magmatic/geological process studies for the mitigation of volcanic hazards including air traffic security. Existing techniques used to probe volcanic gas fluxes have severe limitations such as the requirement of near-vent in situ measurements, which is unsafe for operators and deleterious for equipment. In order to overcome these limitations, a novel range-resolved DIAL-Lidar (Differential Absorption Light Detection and Ranging) has been developed as part of…
AGU Centennial Grand Challenge: Volcanoes and Deep Carbon Global CO 2 Emissions From Subaerial Volcanism—Recent Progress and Future Challenges
Quantifying the global volcanic CO2 output from subaerial volcanism is key for a better understanding of rates and mechanisms of carbon cycling in and out of our planet and their consequences for the long-term evolution of Earth's climate over geological timescales. Although having been the focus of intense research since the early 1990s, and in spite of recent progress, the global volcanic CO2 output remains inaccurately known. Here we review past developments and recent progress and examine limits and caveats of our current understanding and challenges for future research. We show that CO2 flux measurements are today only available for ~100 volcanoes (cumulative measured flux, 44 Tg CO2/y…
Magmatic gas leakage at Mt.Etna (Sicily,Italy):Relationships with the volcano-tectonic structures,the hydrological pattern and the eruptive activity
Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy)
Abstract The chemical and isotopic features of the fluids (water and gases) in the Lucane thermal area (southern Italy) have been investigated in order to verify their origin, water temperature in the geothermal reservoir, and to recognize the main natural processes concerning the water composition during ascent towards the surface. The Lucane geothermal system is placed in the southern sector of the Apennines chains, a seismically active area, close to the southern base of the Mt. Alpi carbonate massif. Along the study area, two main sets of high-angle faults form an almost orthogonal fault system that, as suggested by local structural geology, acts as a preferential pathway for uprising d…
Crustal dynamics of Mount Vesuvius from 1998 to 2005: Effects on seismicity and fluid circulation
[1] This paper presents the results of hydrogeochemical and seismological studies carried out at Mount Vesuvius during the period June 1998 to December 2005. Hydrogeochemical data show the occurrence of slowly varying long-term variations in the total dissolved salts and bicarbonate contents of the groundwaters, accompanied by a general decline in water temperatures. The temporal distributions of air temperature and rainfall in the Vesuvius area suggest that these variations do not depend on changes in the hydrological regime. The changes in the geochemical parameters are accompanied by slight variations in both the seismicity rate and energy release. A further relationship between seismic …
Selenium mobilization in soils due to volcanic derived acid rain: An example from Mt Etna volcano, Sicily
International audience; The significant amounts of selenium (Se) emitted by volcanoes may have important impact on human health due to the narrow range between nutrition requirement and toxic effects for living organisms upon Se exposure. Although soils play a key role in determining the level in food and water and thereby human health, little is known about the behaviour of Se in volcanic soils. In this work we evaluated the Se release during rainwater–soil interaction under controlled conditions using soils collected on the flanks of Etna volcano and synthetic rain. Selenium concentrations in soil leachate solutions displayed a spatial distribution, which cannot be explained by plume depo…
Degassing of halogens from basaltic volcanism: Insights from volcanic gas observations
Abstract The currently available data set of S–Cl–F abundances in volcanic gas plumes and high-temperature fumarolic gas samples from basaltic volcanism is reviewed here in the attempt to derive constraints on the modes of halogen degassing from mafic silicate melts. Apart from large volcano-to-volcano variations, reflecting remarkable differences in volatile abundances in the source magmas, each of the explored volcanoes displays large changes of SO2/HCl and SO2/HF ratios with the style of volcanic activity, with HCl/HF staying fairly constant. Halogen abundances are low and SO2/HCl and SO2/HF are high when fresh (volatile-rich) magmas sustain degassing, as during explosive eruptions, at t…
Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano
We present the results of a study of volcanic gases at Soufriere Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640.2750 t/d and 84.266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of e…
Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)
he 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were …
Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes
Abstract This paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002–January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1–6.8 and 0.9–5.6, respectively. Plume S/Cl ratios increased by a factor of ∼10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to …
Mercury from volcanoes: fluxes and speciation
Mercury is a toxic bio-accumulating metal that, due to its volatility has an extended atmospheric lifetime. Understanding Hg sources and sinks is therefore has importance on the global scale. We present new measurements of volcanic Hg from Mount Etna and Vulcano in Italy and Masaya volcano in Nicaragua to improve our estimates of the volcanic Hg flux. In contrast to other metals emitted from volcanoes, volcanic Hg can exist in 3 forms, namely gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and in the particle phase. These measurements also represent the first fully speciated measurements of volcanic Hg, as well as the first high time resolution measurements of gaseous Hg. Vo…
Halogens in Mafic and Intermediate-Silica Content Magmas
As volatile and variably mobile components, halogens play key roles in magmatic, metasomatic, mineralizing, and volcanic processes by influencing the physical and chemical properties of melts, fluids, and minerals. Volcanic emission of halogens to the atmosphere leads to long- and short-term impacts on atmospheric chemistry that range from global perturbation of the stratospheric O3 budget to more localized life-threatening contamination of soils and fresh water. The concentrations of F, Cl, Br, and I in melts, fluids, and minerals provide crucial geochemical information and insights into magmatic processes ranging from partial melting to volcanic eruptions. Halogen research is useful for e…
Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: Evidence from La Fossa Crater fumarolic field, Vulcano Island
[1] Sulfur speciation in volcanic gases is a potentially valuable tracer of degassing processes at volcanoes. Hitherto, observations of sulfur speciation in volcanic gas plumes have however been limited both in number and quality. Here, we report on periodic measurements of SO2 to H2S proportions in the volcanic gases from La Fossa volcano (Vulcano Island) performed during 2004–2006, a period which encompasses two heating events of the fumarolic field in January–April 2005 and December 2005. Results indicate a systematic relative increase (by a factor of 2–6) of SO2 to H2S proportions in the fumaroles during the heating events, which we ascribe to a temperature increase in the mixing zone b…
In situ Volcano Monitoring: Present and Future
During the last couple of decades, volcanology has evolved significantly, allowing for an improved understanding of volcanic processes preceding, accompanying and following eruptive events. Key elements to these achievements are the huge amounts of high quality data being collected by networks of increasingly sensitive instruments deployed at active volcanoes. The diffusion of continuous, precise measurements of: (1) wide-band ground displacement; (2) flux and chemistry of volatile emissions; and (3) the spatio-temporal variations of potential fields (e.g., gravity) now permit imaging the mechanism that controls mass transfer underneath volcanoes to an unprecedented level of detail. Joined …
Steam and gas emission rates from La Soufrière of Guadeloupe (Antilles arc): implications for the magmatic supply degassing during unrest
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first dem…
BVLOS UAS Operations in Highly-Turbulent Volcanic Plumes.
Long-range, high-altitude Unoccupied Aerial System (UAS) operations now enable in-situ measurements of volcanic gas chemistry at globally-significant active volcanoes. However, the extreme environments encountered within volcanic plumes present significant challenges for both air frame development and in-flight control. As part of a multi-disciplinary field deployment in May 2019, we flew fixed wing UAS Beyond Visual Line of Sight (BVLOS) over Manam volcano, Papua New Guinea, to measure real-time gas concentrations within the volcanic plume. By integrating aerial gas measurements with ground- and satellite-based sensors, our aim was to collect data that would constrain the emission rate of …
Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica
Texto completo del documento Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO21–6 days prior to eruption. The SO2flux derived from magmatic degassing through the lake is measureable by differential optical absorpti…
Insights on Hydrothermal‐Magmatic Interactions and Eruptive Processes at Poás Volcano (Costa Rica) From High‐Frequency Gas Monitoring and Drone Measurements
Texto completo del documento Identification of unambiguous signals of volcanic unrest is crucial in hazard assessment. Processes leading to phreatic and phreatomagmatic eruptions remain poorly understood, inhibiting effective eruption forecasting. Our 5‐year gas record from Poás volcano, combined with geophysical data, reveals systematic behavior associated with hydrothermal‐magmatic eruptions. Three eruptive episodes are covered, each with distinct geochemical and geophysical characteristics. Periods with larger eruptions tend to be associated with stronger excursions in monitoring data, particularly in SO2/CO2 and SO2 flux. The explosive 2017 phreatomagmatic eruption was the largest erupt…
Volcanic gases
Modelling of water rock interactions in a carbonate aquifer: insights from a case study in the Palermo province
H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes
Abstract We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO 2 /H 2 S molar ratios of ≈0.38 and ≈1.4, respectively, from which we estimate an H 2 S flux of 6 to 9 t · d −1 for the summit crater. For Mt. Etna and Stromboli, we found SO 2 /H 2 S molar ratios of ≈20 and ≈15, respectively, which combined with SO 2 flux measurements, suggest H 2 S emission rates of 50 to 113 t · d −1 and 4 to 8 t · d −1 , respectively. We observe that “source” and plume SO 2 /H 2 …
Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data
We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5−2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16−25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…
Chemical and isotopic characterization of ground water discharges on the Ischia island ( Italy )
Hydrogen emissions from Erebus volcano, Antarctica
International audience; The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03 kg s-1 (2.8 Mg day-1). The observed H2 content in the plume is consistent with previous estimates of redox cond…
The Magmatic Gas Signature of Pacaya Volcano, With Implications for the Volcanic CO2Flux From Guatemala
Pacaya volcano in Guatemala is one of the most active volcanoes of the Central American Volcanic Arc (CAVA). However, its magmatic gas signature and volatile output have received little attention to date. Here, we present novel volcanic gas information from in-situ (Multi-GAS) and remote (UV camera) plume observations in January 2016. We find in-plume H2O/SO2 and CO2/SO2 ratios of 2-20 and 0.6-10.5, and an end-member magmatic gas signature of 80.5 mol. % H2O, 10.4 mol. % CO2, and 9.0 mol. % SO2. The SO2 flux is evaluated at 885 ± 550 tons/d. This, combined with co-acquired volcanic plume composition, leads to H2O and CO2 fluxes of 2,230 ± 1,390 and 700 ± 440, and a total volatile flux of ∼3…
Gas Emissions From the Western Aleutians Volcanic Arc
The Aleutian Arc is remote and highly active volcanically. Its 4,000 km extent from mainland Alaska to Russia’s Kamchatka peninsula hosts over 140 volcanic centers of which about 50 have erupted in historic times. We present data of volcanic gas samples and gas emission measurements obtained during an expedition to the western-most segment of the arc in September 2015 in order to extend the sparse knowledge on volatile emissions from this remote but volcanically active region. Some of the volcanoes investigated here have not been sampled for gases before this writing. Our data show that all volcanoes host high-temperature magmatic-hydrothermal systems and have gas discharges typical of volc…
Degassing of trace volatile metals during the 2001 eruption of Etna
This paper provides new data on sulfur, halogens, and minor and trace metal contents in airborne particulate matter from the Mt. Etna volcanic plume. Aerosol samples were collected by conventional filtration techniques before and during the summer 2001 eruption, in order to investigate relations between plume chemistry and volcano dynamics. Data analysis reveals that abundances of trace metals in the plume result from mixing of erosive and volatile components. The former is responsible for the contents of rare earth elements (REE), Ca, Ba, Sr, Ti, Sc, Y, Hf and Th; the latter contributes significantly to the abundance of Cs, Rb, Na and K, probably transported in the plume as metal halides, …
High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna
Abstract We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short te…
Quantification of the depletion of ozone in the plume of Mount Etna
Volcanoes are an important source of inorganic halogen species into the atmosphere. Chemical processing of these species generates oxidised, highly reactive, halogen species which catalyse considerable O3 destruction within volcanic plumes. A campaign of ground-based in situ O3, SO2 and meteorology measurements was undertaken at the summit of Mount Etna volcano in July/August 2012. At the same time, spectroscopic measurements were made of BrO and SO2 columns in the plume downwind. Depletions of ozone were seen at all in-plume measurement locations, with average O3 depletions ranging from 11–35 nmol mol−1 (15–45%). Atmospheric processing times of the plume were estimated to be between 1 and …
Spectroscopic capture of 1 Hz volcanic SO2fluxes and integration with volcano geophysical data
[1] Here we present a novel spectroscopic approach to capturing, with unprecedented time resolution and accuracy, volcanic SO2 fluxes. This is based on two USB2000 spectrometers, coupled to cylindrical lens telescopes, each collecting light which has transited horizontal sections of the rising plume. We report on field data from Stromboli volcano, in which the entire emission rate from the volcano was measured, as well as flux signatures associated with individual crater explosions. The latter were integrated with seismic and thermal data, demonstrating correlations in both cases, and representing the first such geophysical-geochemical data corroboration on this timescale. Such a holistic e…
Volcanic plume monitoring at Mount Etna by diffusive (passive) sampling
[1] This paper reports the use of diffusive tubes in determining HF, HCl, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna's flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to <0.003 μmol m−3, HCl from 2 to <0.01 μmol m−3, and SO2 from 11 to 0.04 μmol m−3), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements a…
Volcanic activity and gas emissions along the South Sandwich Arc
AbstractThe South Sandwich Volcanic Arc is one of the most remote and enigmatic arcs on Earth. Sporadic observations from rare cloud-free satellite images—and even rarer in situ reports—provide glimpses into a dynamic arc system characterised by persistent gas emissions and frequent eruptive activity. Our understanding of the state of volcanic activity along this arc is incomplete compared to arcs globally. To fill this gap, we present here detailed geological and volcanological observations made during an expedition to the South Sandwich Islands in January 2020. We report the first in situ measurements of gas chemistry, emission rate and carbon isotope composition from along the arc. We sh…
The Cycle of volcanogenic trace elements at Mt Etna (Italy): From volcanic emissions to atmospheric deposition
Caratterizzazione geofisica dell'acquiferio idrotermale dell'area di Panza (Ischia)
Terminal Strombolian activity at Etna’s central craters during summer 2012: The most CO<sub>2</sub>-rich volcanic gas ever recorded at Mount Etna
Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy)
[1] The performance of a newly-developed portable gas analyzer, capable of real-time measurement of CO2, SO2 and H2S concentrations in volcanic gases, was tested at La Fossa Crater, Vulcano Island. The gas analyzer was used to acquire about 3000 determinations over the fumarolic field, allowing the definition of its chemical structure and heterogeneity. Our high-resolution analysis reveals that, in December 2004, the La Fossa fumarolic field was characterized by an oxidized inner core (SO2/H2S ratios of ∼3), and by more reducing conditions on its northern edge (SO2/H2S ratios of ∼1; range: 0.2–3.3). CO2/(SO2+H2S) molar ratios averaged 35 ± 21, with overlapping compositions for rim and inner…
HIGH RESOLUTION ANALYSIS WITH A MULTI-SENSOR GAS ANALYZER, AND APPLICATIONS TO ETNA, STROMBOLI AND VULCANO ISLAND (ITALY)
Magma Degassing at Piton de la Fournaise Volcano
Since about 1860 AD, magmatic gas release at Piton de la Fournaise volcano is very weak during intra-eruptive phases and essentially occurs during the relatively short-lived eruptions. Recent gas measurements performed during an eruption in October 2010, combined with detailed review of melt and fluid inclusion composition in magmas erupted over the past 50 kyrs, indicate that most PdF eruptions extrude magmas having variably degassed at shallow depth (P 1 kbar) and the shallow magmas, whose fluids are efficiently scrubbed by the hydrothermal system and the water table. Quantification of SO2 fluxes permits to track syn-eruptive magma ascent at shallow level (above sea level). Deeper exsolut…
Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy)
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 690…
A model for Ischia hydrothermal system: Evidences from the chemistry of thermal groundwaters.
Abstract Ischia volcano, in Central Italy, has long been known for its copious surface hydrothermal manifestations, signs of a pervasive circulation of hot fluids in the subsurface. Because of the significant chemical heterogeneity of fumarolic gas discharges and hot spring discharges, evidences of a complex hydrothermal setting, a definite model of fluid circulation at depth is currently unavailable, in spite of the several previous efforts. Here, we report on the chemical and isotopic composition of 120 groundwater samples, collected during several sampling surveys from 2002 to 2007. The acquired data suggest that the composition of surface manifestations reflect contributions from meteor…
Volcanic Gas Emissions Along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for volcano monitoring and volatile budget of the Andean Volcanic Belt
Studying spatial and temporal trends in volcanic gas compositions and fluxes is crucial both to volcano monitoring and to constrain the origin and recycling efficiency of volatiles at active convergent margins. New volcanic gas compositions and volatile fluxes are here reported for Nevado del Ruiz, Galeras, and Purace, three of the most persistently degassing volcanoes located in the Colombian Arc Segment of the Northern Volcanic Zone. At Nevado del Ruiz, from 2014 to 2017, plume emissions showed an average molar CO2/S-T ratio of 3.9 +/- 1.6 (S-T is total sulfur, S). Contemporary, fumarolic chemistry at Galeras progressively shifted toward low-temperature, S-depleted fumarolic gas discharge…
Tracking Formation of a Lava Lake From Ground and Space: Masaya Volcano (Nicaragua), 2014-2017
A vigorously degassing lava lake appeared inside the Santiago pit crater of Masaya volcano (Nicaragua) in December 2015, after years of degassing with no (or minor) incandescence. Here we present an unprecedented-long (3 years) and continuous volcanic gas record that instrumentally characterizes the (re)activation of the lava lake. Our results show that, before appearance of the lake, the volcanic gas plume composition became unusually CO 2 rich, as testified by high CO 2 /SO 2 ratios (mean: 12.2 ± 6.3) and low H 2 O/CO 2 ratios (mean: 2.3 ± 1.3). The volcanic CO 2 flux also peaked in November 2015 (mean: 81.3 ± 40.6 kg/s; maximum: 247 kg/s). Using results of magma degassing models and budg…
H2S fluxes from Mt. Etna, Stromboli and Vulcano (Italy) and implications for the global volcanic sulfur budget
We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of 0.38 and 1.4, respectively, from which we estimate an H2S flux of 6 to 9 t · d 1 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of 20 and 15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 t · d 1 and 4 to 8 t · d 1, respectively. We observe that “source” and plume SO2/H2S ratios at Vulcano are similar, s…
The role of melt composition on aqueous fluid vs. silicate melt partitioning of bromine in magmas
International audience; Volcanogenic halogens, in particular bromine, potentially play an important role in the ozone depletion of the atmosphere. Understanding bromine behaviour in magmas is therefore crucial to properly evaluate the contribution of volcanic eruptions to atmospheric chemistry and their environmental impact. To date, bromine partitioning between silicate melts and the gas phase is very poorly constrained, with the only relevant experimental studies limited to investigation of synthetic melt with silicic compositions. In this study, fluid/melt partitioning experiments were performed using natural silicate glasses with mafic, intermediate and silicic compositions. For each co…
First 13C/12C isotopic characterisation of volcanic plume CO2
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 betw…
New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop
Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term exc…
VOLCANIC CO2 FLUX MEASUREMENTS BY TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY
Introduction In the last decades, the use of near-infrared room-temperature diode lasers for gas sensing has grown significantly. The use of these devices, for instance in combination with optical fibers, is particularly convenient for volcanic monitoring applications [1,2]. Here, we report on the first results of the application of an open-path infrared tunable laser-based at Campi Flegrei (Southern Italy). Such Diode-laser-based measurements were performed, during two field campaigns (october 2012, and january 2013), in the attempt to obtain novel information on the current degassing unrest of Solfatara and Pisciarelli fumarolic fields. Results and Discussion At each site, we used an ad-h…
Rainwater-induced leaching of selenium, arsenic and vanadium from Etnean volcanic soils
Active volcanoes emit considerable amounts of contaminants such as As, Se and V. Mount Etna is the biggest volcano of Europe and an excellent geochemical site to study water-soil processes. Due to its volcanic activity, the rainwater has a strong compositional gradient, both in time and space. At present, the behaviour of trace elements in the soils around Mt Etna is poorly understood. To determine the influence of the rainwater pH on the potential mobilization of geogenic pollutants, batch experiments have been performed with synthetic rainwater for 25 soils collected along the flanks of the volcano. Our results show that: i) The maximum concentrations in the leaching solutions are higher …
Volatile contents of mafic-to-intermediate magmas at San Cristóbal volcano in Nicaragua
San Cristóbal volcano in northwest Nicaragua is one of the most active basaltic–andesitic stratovolcanoes of the Central American Volcanic Arc (CAVA). Here we provide novel constraints on the volcano's magmatic plumbing system, by presenting the first direct measurements of major volatile contents in mafic-to-intermediate glass inclusions from Holocene and historic-present volcanic activity. Olivine-hosted (forsterite [Fo] < 80; Fo< 80) glass inclusions from Holocene tephra layers contain moderate amounts of H2O (0.1–3.3 wt%) and S and Cl up to 2500 μg/g, and define the mafic (basaltic) endmember component. Historic-present scoriae and tephra layers exhibit more-evolved olivines (Fo69…
First study of the heat and gas budget for Sirung volcano, Indonesia
International audience; With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, 17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, 11 Gg of H2S, 17 Gg of CO2, and 550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydroth…
Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes
[i] We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO 2 flux (8.5 Mg d- 1 ), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO 2 /SO 2 ratio; by multiplying these data we compute a CO 2 flux of 170 Mg d -1 . Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydro-thermal systems, relative to SO 2 , the ability to remotely measure CO 2 fluxes is significant, with promise to provide more profound…
Lidar sounding of volcanic plumes
ABSTRACT Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO 2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO 2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on r…
Recycled crustal carbon in the depleted mantle source of El Hierro volcano, Canary Islands
The Canary Islands, in the eastern Atlantic, are among the most enigmatic Oceanic Island provinces on Earth, as the mantle source feeding its volcanism exhibits wide spatial heterogeneity and a multiplicity of sources. Multi-isotope whole-rock studies have long revealed the presence of a recycled oceanic crust/lithosphere component in the mantle source. However, noble gas systematics have been more challenging to interpret, and the available carbon isotope data is limited and cannot support/dismiss this interpretation. Here, we present the very first isotopic characterisation of CO2 and noble gases (He-Ne-Ar) in fluid inclusions (FI) in minerals hosted in mantle xenoliths from El Hierro, th…
First-time lidar measurement of water vapor flux in a volcanic plume
Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)
International audience; Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (>240×106 m3>240×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composi…
Selenium around Etna Volcano, Italy
Humans are attracted by the fertile properties of volcanic soils and currently around 10% of the world population lives within active volcanic areas. Volcanoes emit significantly amounts of potentially toxic elements such as selenium (Se), even in the absence of obvious volcanic activity. Although Se is an essential element for humans, ingestion of an excess amount of Se can produce adverse effects. Mt. Etna, the biggest volcano in Europe, is persistently active for the last 200,000 years and one of the most intensely monitored volcanoes. We have studied selenium in rainwater and soils from Mt Etna volcano. Bulk depositions were collected from April 2006 to December 2007, using a network of…
Scavenging of sulphur, halogens and trace metals by volcanic ash: The 2010 Eyjafjallajökull eruption
The Eyjafjallajökull volcanic eruption in 2010 released considerable amounts of ash into the high troposphere-low stratosphere, leading to unprecedented disruption of air traffic over Europe. The role of such fine-grained tephra in adsorbing, and therefore rapidly scavenging, volcanogenic volatile elements such as sulphur and halogens, is explored here. We report on results (major to trace element chemistry) of leaching experiments carried out on 20 volcanic ash samples, taken from the deposits of the main phases of the eruption (March–April 2010), or directly while falling (5–9 May 2010). Ash leachate solutions from Eyjafjallajökull are dominated – among cations – by Ca and Na, and display…
Diffuse degassing of carbon dioxide at Somma-Vesuvius volcanic complex (Southern Italy) and its relation with regional tectonics
Abstract A systematic survey of soil CO 2 concentrations was carried out on the flanks of Somma–Vesuvius volcano in order to constrain possible pathways responsible of carbon dioxide diffuse degassing taking place during the present state of quiescence. Measurements were performed at 1162 sites in late winter–spring 2000, highlighting that soil CO 2 concentrations range from 50 to 10500 ppmV. A statistical analysis was developed in order to define the threshold value of anomaly and separate the biogenic CO 2 component, produced by soil respiration, from the inorganic component of deep provenance. A computer routine was also elaborated to interpret the grid of CO 2 anomalous concentration va…
CO2 flux emissions from the Earth's most actively degassing volcanoes, 2005-2015
AbstractThe global carbon dioxide (CO2) flux from subaerial volcanoes remains poorly quantified, limiting our understanding of the deep carbon cycle during geologic time and in modern Earth. Past attempts to extrapolate the global volcanic CO2 flux have been biased by observations being available for a relatively small number of accessible volcanoes. Here, we propose that the strong, but yet unmeasured, CO2 emissions from several remote degassing volcanoes worldwide can be predicted using regional/global relationships between the CO2/ST ratio of volcanic gases and whole-rock trace element compositions (e.g., Ba/La). From these globally linked gas/rock compositions, we predict the CO2/ST gas…
Ultraviolet camera measurements of passive and explosive (Strombolian) sulphur dioxide emissions at Yasur volcano, Vanuatu
Here, we present the first ultraviolet (UV) camera measurements of sulphur dioxide (SO2) flux from Yasur volcano, Vanuatu, for the period 6–9 July 2018. These data yield the first direct gas-measurement-derived calculations of explosion gas masses at Yasur. Yasur typically exhibits persistent passive gas release interspersed with frequent Strombolian explosions. We used compact forms of the “PiCam” Raspberry Pi UV camera system [1,2] powered through solar panels to collect images. Our daily median SO2 fluxes ranged from 4 to 5.1 kg s−1, with a measurement uncertainty of −12.2% to +14.7%, including errors from the gas cell calibration drift, uncertainties in plume direction and distance, and…
Halogens in volcanic systems
The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the 12 focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop 13 on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at 14 Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special 15 issue, collecting contributions from many of the participants at the workshop, we review here recent 16 advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic 17 and related magmatic systems. We discuss pr…
THE IMPACT OF VOLCANIC EMISSIONS ON ETNA’S SNOW COVER
Halogen (Cl, F) release during explosive, effusive, and intrusive phases of the 2011 rhyolitic eruption at Cordón Caulle volcano (Chile)
We investigate sulphur, chlorine and fluorine release during explosive, effusive and intrusive phases of the 2011 Cordon Caulle eruption, with a focus on halogen devolatilization. Petrological analysis shows halogen release to have been promoted by isobaric crystallization in slowly-cooled magma that was emplaced in a lava flow and sub-vent intrusion. Fluorine in particular mobilized only after extensive groundmass crystallization and incipient devitrification. By 2017, the gas emitted from vent-proximal fumaroles had hydrothermal compositions, with HCl/HF ratios decreasing with decreasing temperature. We estimate that the eruption could eventually emit up to 0.84 Mt of SO2, 6.3 Mt of HCl, …
Geochemical investigations on submarine hydrothermal exhalations oof the Island of Panarea (Aeolian islands): assessment of the volcano-geothermal system and its evolution.
Plume chemistry and potential impacts of the plume from the recent activity at Halema’uma’u, Kilauea, USA.
Since the 19 March 2008 explosion within Halema‘uma‘u that formed the new vent at Kilauea’s summit, degassing rates have been greatly elevated above the levels typical of previous years. The location and subsequent dispersion of this new degassing presents its own specific problems compared to that in the east rift zone. For example, throughout 2008 the Halema’uma’u plume was generally blown through the Kau desert, directly affecting downwind communities. In this study we present measurements made in July and halogens (HF, HCl, HBr and HI) in the new 2008. We characterize the gas chemistry in terms of SO 2 plume from Halema’uma’u in order to compare them with other plumes worldwide, includi…
Patterns in the recent 2007-2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations
[1] Seismic, deformation, and volcanic gas observations offer independent and complementary information on the activity state and dynamics of quiescent and eruptive volcanoes and thus all contribute to volcanic risk assessment. In spite of their wide use, there have been only a few efforts to systematically integrate and compare the results of these different monitoring techniques. Here we combine seismic (volcanic tremor and long-period seismicity), deformation (GPS), and geochemical (volcanic gas plume CO2/SO2 ratios) measurements in an attempt to interpret trends in the recent (2007–2008) activity of Etna volcano. We show that each eruptive episode occurring at the Southeast Crater (SEC)…
First multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles)
We used a Multi-component Gas Analyser System (Multi-GAS) to measure, for the very first time, the composition (H2O, CO2, H2S, SO2) of the volcanic gas plume issuing from the Boiling Lake, a vigorously degassing, hot (T ~ 80-90°C) volcanic lake in Dominica, West Indies. The Multi-GAS captured in-plume concentrations of H2O, CO2 and H2S were well above those typical of ambient atmosphere, while no volcanic SO2 was detected (&lt;0.05 ppm). These were used to derive the Boiling Lake plume characteristic ratios of CO2/H2S (5.2±0.4) and H2O/CO2 (31.4±6). Assuming that other volcanic gas species (e.g., HCl, CO, H2, N2, etc.) are absent in the plume, we recalculated a (air-free) composition fo…
A new set of standards for in–situ measurement of bromine abundances in natural silicate glasses: Application to SR-XRF, LA-ICP-MS and SIMS techniques
Measuring the low bromine abundances in Earth's materials remains an important challenge in order to constrain the geodynamical cycle of this element. Suitable standard materials are therefore required to establish reliable analytical methods to quantify Br abundances. In this study we characterise 21 Br-doped glasses synthesized from natural volcanic rocks of mafic to silicic compositions, in order to produce a new set of standards for Br analyses using various techniques. The nominal Br contents (amounts of Br loaded in the experimental samples) of 15 of 21 glasses were confirmed within 20% by instrumental neutron activation analysis (INAA). Using this new set of standards, we compare thr…
Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua
We report measurements of Hg, SO2, and halogens (HCl, HBr, HI) in volcanic gases from Masaya volcano, Nicaragua, and gaseous SO2 and halogens from Telica volcano, Nicaragua. Mercury measurements were made with a Lumex 915+ portable mercury vapor analyzer and gold traps, while halogens, CO2 and S species were monitored with a portable multi gas sensor and filter packs. Lumex Hg concentrations in the plume were consistently above background and ranged up to 350 ng m-3. Hg/SO2 mass ratios measured with the real-time instruments ranged from 1.1 × 10-7 to 3.5 × 10-5 (mean 2 × 10-5). Total gaseous mercury (TGM) concentrations measured by gold trap ranged from 100 to 225 ng m-3. Reactive gaseous m…
Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)
There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H-2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) conc…
Gas mass derived by infrasound and UV cameras: Implications for mass flow rate
Abstract Mass Flow Rate is one of the most crucial eruption source parameter used to define magnitude of eruption and to quantify the ash dispersal in the atmosphere. However, this parameter is in general difficult to be derived and no valid technique has been developed yet to measure it in real time with sufficient accuracy. Linear acoustics has been applied to infrasonic pressure waves generated by explosive eruptions to indirectly estimate the gas mass erupted and then the mass flow rate. Here, we test on Stromboli volcano (Italy) the performance of such methodology by comparing the acoustic derived results with independent gas mass estimates obtained with UV cameras, and constraining th…
Magmatic Volatile Emissions from Ambrym and Yasur Volcanoes (Vanuatu Arc)
New advances in dial-lidar-based remote sensing of the volcanic CO2 flux
We report here on the results of a proof-of-concept study aimed at remotely sensing the volcanic CO2 flux using a Differential Adsorption lidar (DIAL-lidar). The observations we report on were conducted on June 2014 on Stromboli volcano, where our lidar (LIght Detection And Ranging) was used to scan the volcanic plume from ~ 3 km distance from the summit vents. The obtained results prove that a remotely operating lidar can resolve a volcanic CO2 signal of a few tens of ppm (in excess to background air) over km-long optical paths. We combine these results with independent estimates of plume transport speed (from processing of UV Camera images) to derive volcanic CO2 flux time-series of ≈16-3…
Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes
Aerial measurements using unoccupied aerial systems (UAS) transform our ability to measure and monitor volcanic plumes.
Anomalous magmatic degassing prior to the 5th April 2003 paroxysm on Stromboli
[1] A major explosion occurred at Stromboli on April 5 2003, being the most powerful event over a period of exceptional eruptive activity lasting from December to July. Here, we describe results from a network of diffusive tubes set up on the Stromboli's summit area, aimed at a characterisation of plume composition (SO2, HCl, HF) prior to and after April 5. Data analysis revealed anomalous sulphur degassing 2–3 days before the event, when SO2/HCl ratios (≈9) significantly higher than those typical of quiescent degassing (≈1) were recorded. We interpret this exceptional plume signature as an evidence of S-rich magmas ascending in the shallow plumbing system, and propose high SO2/HCl as a pot…
Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence
The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…
The Hydrothermal System of the Campi Flegrei Caldera, Italy
In this chapter, we review the state-of-the-art of the Campi Flegrei caldera (Naples) hydrothermal system, and its behaviour during the last decades. The Campi Flegrei caldera has been undergoing unrest since 1950, as evidenced by recurrent bradyseismic episodes accompanied by manifest changes in the degassing budget, degassing patterns and in the composition of the fumarolic fluids. In-depth analysis of geochemical and geophysical datasets acquired over decades has allowed identification of the mechanisms driving volcanic unrest at the Campi Flegrei caldera. We propose a conceptual model of the hydrothermal system feeding Solfatara fumaroles, where geochemical information is integrated wit…
Volcanic signature of volatile trace elements on atmospheric deposition at Mt. Etna, Italy
Volcanic volatiles and aerosol emitted into the atmosphere ultimately fall on the Earth’s surface as wet or dry deposition, and they can influence the environment and the ecosystems at local and regional scales. Therefore, atmospheric deposition plays a key-role in the geochemical cycles, redistributing volcanogenic elements to the ground. For this reason, estimating the volcanogenic trace element fluxes from the atmosphere to the surface is necessary for a better knowledge of the environmental impact of the volcanic emissions. Nevertheless, from a literature review, we have recognized the scarcity of investigation on trace element deposition in the surroundings of active volcanoes. Here, w…
Rapid chemical evolution of tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and halogen-containing gases
Abstract We report results from an observational and modeling study of reactive chemistry in the tropospheric plume emitted by Redoubt Volcano, Alaska. Our measurements include the first observations of Br and I degassing from an Alaskan volcano, the first study of O 3 evolution in a volcanic plume, as well as the first detection of BrO in the plume of a passively degassing Alaskan volcano. This study also represents the first detailed spatially-resolved comparison of measured and modeled O 3 depletion in a volcanic plume. The composition of the plume was measured on June 20, 2010 using base-treated filter packs (for F, Cl, Br, I, and S) at the crater rim and by an instrumented fixed-wing a…
Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)
Abstract We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO 2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO 2 flux from Stromboli over a timeframe of ∼14 h, which ranged between 0.4 and 1.9 kg s −1 around a mean value of 0.7 kg s −1 and we concurrently derived SO 2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO 2 masses have a variability of up to one order of mag…
Emission of bromine and iodine from Mount Etna volcano
Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr-1 and 0.01 kt yr-1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I fluxes …
• Volcanic CO2 measurements via Tunable Diode Laser Spectrometer
The analysis of volcanic gas datasets offer key information to build/validate geological models relevant to a variety of volcanic processes and behaviours, including eruptions. In the last decades, near-infrared room-temperature diode lasers, though in an experimental phase, are finding applications in volcanic gas studies. Here, we report on the application of the GasFinder 2.0, a commercial tunable diode infrared laser-receiver unit, operating in the 1.3-1.7 μm wavelength range, to measuring CO2 concentrations in volcanic gas emissions. At first, our field tests were conducted in three different campaigns at Campi Flegrei volcano (near Pozzuoli, Southern Italy), and, subsequently, also in…
Volcanic CO2 mapping and flux measurements at Campi Flegrei by Tunable Diode Laser absorption Spectroscopy
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in t…
Active volcanoes as emission point sources of atmospheric mercury
ercury emissions from active volcanoes are of interest for estimating the volcanogenic contribution of Hg to the atmosphere and for monitoring volcanic activity. The global Hg flux from natural sources is poorly known and considerable uncertainty still exists with respect to the complex physical and chemical reactions taking place in the atmosphere among the various Hg forms. The environmental hazard of Hg have been widely demonstrated for its high toxicity. Previous estimates from volcanic plumes are based on limited measurements and poorly determined speciation of Hg in volcanic emissions which is crucial for making reliable estimates of volcanic Hg source strengths and for predicting atm…