0000000000133711

AUTHOR

Marcello Colocci

Consequences of the spatial localization on the exciton recombination dynamics in InGaP/GaAs heterostructures

5 páginas, 4 figuras.

research product

Resonant rayleigh scattering in semiconductor structures

A detailed study of the relative role played by localized and/or propagating intermediate excitonic states in, resonant Rayleigh scattering (RRS) is presented for a large set of GaAs quantum well (QW) and bulk structures. We show that the two kinds of states contribute to RRS through different mechanisms. We concluded that RRS occurs via localized states in QW heterostructures, very likely due to localization by the interface roughness, while bulk, crystals turn out to be better candidates for RRS via propagating states.

research product

Exciton kinetics and luminescence in disordered InxGa 1-xP/GaAs quantum wells

Trabajo presentado en el 7th International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, NOEKS 2003, celebrado en Karlsruhe (Alemania), del 23 al 28 de febrero de 2003

research product

Elastic light scattering from semiconductor structures: Localized versus propagating intermediate electronic excitations

We present a theoretical study of the relative role of localized and propagating intermediate electronic states in the processes of elastic scattering of light. Only localized excitations lead to isotropic scattering in lowest-order perturbation theory. Inhomogeneous broadening of the optical transition affects the scattering efficiency from the ordered and disordered array of localized states in a qualitatively different way. The propagating electronic excitations may only contribute to elastic light scattering via higher-order processes. The scattering of excitons by impurities or the interface roughness potential is suggested as a mechanism for the contribution of propagating excitations…

research product

Type II narrow double barrier quantum well structures : Γ-X coupling and interface effects

Photoluminescence (PL), PL excitation and time resolved PL experiments have been performed on Al0.42Ga0.58As/AlAs/GaAs symmetric double barrier quantum wells (DBQW) with only one or two AlAs monolayers constituting the intermediate barriers. In agreement with the envelope function predictions we show that such DBQW's undergo a type I - type II transition when the GaAs thickness is reduced below 7 and 5 monolayers for 2 and 1 AlAs molecular planes respectively. In type II configuration the PL decay time is found to be strongly dependent on the energy difference between AlAs Xz - and GaAs Γ - electron confined states and the coupling parameter of the Γ and Xz valleys can be deduced (4.2 meV o…

research product

Resonant Rayleigh scattering in quantum well structures

Abstract We report continuous wave experiments on resonant Rayleigh scattering (RRS) performed on high quality GaAs AlGaAs quantum well structures. The simultaneous measurement of the resonant Rayleigh scattering and of the photoluminescence excitation (PLE) allows us to resolve very small differences between the two spectra. We show that, even in very good samples, there is a small but detectable Stokes shift of the RRS profile with respect to the PLE. It is also found that the RRS profile has a smaller linewidth and is sensitive to bound exciton transitions which are not detectable in the PLE. We compare our data with previous findings and discuss possible origins of the Stokes shift.

research product

Temperature dependence of the effective mobility edge and recombination dynamics of free and localized excitons in InGaP/GaAs quantum wells

3 páginas, 1 figura.-- Comunicación presentada al Proceedings of the International Conference on Superlattices, Nano-structures and Nano-devices ICSNN 2002 o-structures and Nano-devices ICSNN 2002.

research product

Controlled type-I–type-II transition in GaAs/AlAs/AlxGa1−xAs double-barrier quantum wells

We show that the insertion of extremely narrow AlAs layers in double-barrier GaAs/AlAs/${\mathrm{Al}}_{\mathrm{x}}$${\mathrm{Ga}}_{1\mathrm{\ensuremath{-}}\mathrm{x}}$As quantum wells results in a variety of electronic configurations, thus providing a powerful tool for tailoring the electronic transitions in GaAs heterostructures. In particular, the transition from type-I to type-II recombination is shown to occur in correspondence with variations by a single monolayer in the thickness of the AlAs and/or GaAs layers. Drastic changes in the recombination lifetimes are correspondingly observed; at the same time, the photoluminescence efficiency is found to be almost independent of the type-I-…

research product