0000000000142052

AUTHOR

Angelo Visconti

showing 6 related works from this author

Key Contributions to the Cross Section of NAND Flash Memories Irradiated With Heavy Ions

2008

Heavy-ion irradiation of NAND flash memories under operating conditions leads to errors with complex, data-dependent signatures. We present upsets due to hits in the floating gate array and in the peripheral circuitry, discussing their peculiarities in terms of pattern dependence and annealing. We also illustrate single event functional interruptions, which lead to errors during erase and program operations. To account for all the phenomena we observe during and after irradiation, we propose an ldquoeffective cross section,rdquo which takes into account the array and peripheral circuitry contributions to the SEU sensitivity, as well as the operating conditions.

PhysicsNuclear and High Energy PhysicsHardware_MEMORYSTRUCTURESNAND FlashNAND gateHardware_PERFORMANCEANDRELIABILITYsingle event effectsHeavy ion irradiationradiation effects; single event effects; Floating gate memories; NAND FlashIonNuclear Energy and EngineeringGate arrayFloating gate memoriesradiation effectsElectronic engineeringIrradiationElectrical and Electronic EngineeringIEEE Transactions on Nuclear Science
researchProduct

Neutron-induced soft errors in advanced Flash memories

2008

Atmospheric neutrons are a known source of Soft Errors (SE), in static and dynamic CMOS memories. This paper shows for the first time that atmospheric neutrons are able to induce SE in Flash memories as well. Detailed experimental results provide an explanation linking the Floating Gate (FG) cell SE rate to the physics of the neutron-matter interaction. The neutron sensitivity is expected to increase with the number of bits per cell and the reduction of the feature size, but the SE issue is within the limit of current ECC capabilities and will remain so in the foreseeable future.

PhysicsAstrophysics::High Energy Astrophysical PhenomenaHardware_PERFORMANCEANDRELIABILITYFlash memorySEESettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Computational physicsSettore FIS/03 - Fisica della MateriaReduction (complexity)Flash (photography)CMOSLimit (music)Electronic engineeringNeutronSensitivity (control systems)Error detection and correctionneutron irradiationSEE neutron irradiation
researchProduct

Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells

2017

Floating gate cells in advanced NAND Flash memories, with single-level and multi-level cell architecture, were exposed to low-energy proton beams. The first experimental evidence of single event upsets by proton direct ionization in floating gate cells is reported. The dependence of the error rate versus proton energy is analyzed in a wide energy range. Proton direct ionization events are studied and energy loss in the overlayers is discussed. The threshold LET for floating gate errors in multi-level and single-level cell devices is modeled and technology scaling trends are analyzed, also discussing the impact of the particle track size. peerReviewed

protonitNuclear and High Energy PhysicsProtonfloating gate devicesNAND gateFlash memories01 natural sciencesComputer Science::Hardware ArchitectureIonizationFlash memories; floating gate devices; protons; single event effects; Nuclear and High Energy Physics; Nuclear Energy and Engineering; Electrical and Electronic Engineering0103 physical sciencesHardware_ARITHMETICANDLOGICSTRUCTURESElectrical and Electronic Engineeringflash-muistit010302 applied physicsPhysicsRange (particle radiation)ta114ta213protons010308 nuclear & particles physicsbusiness.industryElectrical engineeringsingle event effectsNon-volatile memoryNuclear Energy and EngineeringLogic gateAtomic physicsbusinessEvent (particle physics)Energy (signal processing)IEEE Transactions on Nuclear Science
researchProduct

Traces of errors due to single ion in floating gate memories

2008

Single, high energy, high LET, ions impacting on a Floating gate array at grazing or near-grazing angles lead to the creation of long traces of FGs with corrupted information. Every time a FG is crossed by a single ion, it experiences a charge loss which permanently degrades the stored information. If the ion crosses more than one FG, the threshold voltage of all those FGs interested by its track will be degraded.

PhysicsNon-volatile memoryOpticsbusiness.industryGate arrayTrack (disk drive)Logic gateElectrical engineeringbusinessFlash memoryDegradation (telecommunications)IonThreshold voltage2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial
researchProduct

Can Atmospheric Neutrons Induce Soft Errors in NAND Floating Gate Memories?

2009

Atmospheric neutrons can interact with the matter inside a microelectronic chip and generate ionizing particles, which in turn can change the state of one or more memory bits [soft error (SE)]. In this letter, we show that SEs are possible in Flash memories, although with extremely low probabilities. While this problem will increase for future technologies, we do not expect SEs to be the reliability limiting factor for further floating gate scaling.

Engineeringbusiness.industryNAND FlashElectrical engineeringNAND gateIntegrated circuitCircuit reliabilityChipsingle event effectsFlash memoryElectronic Optical and Magnetic Materialslaw.inventionNon-volatile memorySoft errorlawLogic gateFloating gate memoriesElectronic engineeringradiation effectsElectrical and Electronic Engineeringbusinessradiation effects; Floating gate memories; single event effects; NAND Flash
researchProduct

Effect of Ion Energy on Charge Loss From Floating Gate Memories

2008

Heavy ions typical of the space environment have energies which exceed by orders of magnitude those available at particle accelerators. In this paper we are irradiating state of the art floating gate memories by using both a medium energy (SIRAD) and a high energy (RADEF) facilities. The corruption of stored information decreases when increasing ion energy. The proposed model deals with the broader track found for higher energy ions. Implications for testing procedures and for reliability considerations are discussed.

PhysicsNuclear and High Energy PhysicsOrders of magnitude (temperature)business.industryCyclotronElectrical engineeringParticle acceleratorlaw.inventionIonComputational physicsNon-volatile memoryNuclear Energy and EngineeringlawSingle event upsetElectrical and Electronic EngineeringbusinessEnergy (signal processing)Space environmentIEEE Transactions on Nuclear Science
researchProduct