0000000000190824

AUTHOR

Francesco Ciccarello

Effect of Static Disorder in an Electron-Fabry Perot Interferometr with Two Quantum Scattering Centers

In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static d…

research product

Physical model for the generation of ideal resources in multipartite quantum networking

We propose a physical model for generating multipartite entangled states of spin-$s$ particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies on the management of stationary and well separated spins. Among the generable states, there is a class of $N$-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.

research product

Vacancy-like Dressed States in Topological Waveguide QED

We identify a class of dressed atom-photon states formingat the same energy of the atom at any coupling strength. As a hallmark, their photonic component is an eigenstate of the bare photonic bath with a vacancy in place of the atom. The picture accommodates waveguide-QED phenomena where atoms behave as perfect mirrors, connecting in particular dressed bound states (BS) in the continuum or BIC with geometrically-confined photonic modes. When applied to photonic lattices, the framework provides a general criterion to predict dressed BS in lattices with topological properties by putting them in one-to-one correspondence with photonic BS. New classes of dressed BS are thus predicted in the pho…

research product

Creating quantum correlations through local non-unitary memoryless channels

We show that two qubits, initially in a fully classical state, can develop significant quantum correlations as measured by the quantum discord (QD) under the action of a local memoryless noise (specifically we consider the case of a Markovian amplitude-damping channel). This is analytically proven after deriving in a compact form the QD for the class of separable states involved in such a process. We provide a picture in the Bloch sphere that unambiguously highlights the physical mechanism behind the effect regardless of the specific measure of QCs adopted.

research product

Hot-electron noise suppression in n-Si via the Hall effect

We investigate how hot-electron fluctuations in n-type Si are affected by the presence of an intense (static) magnetic field in a Hall geometry. By using the Monte Carlo method, we find that the known Hall-effect-induced redistribution of electrons among valleys can suppress electron fluctuations with a simultaneous enhancement of the drift velocity. We investigate how hot-electron fluctuations in n-type Si are affected by the presence of an intense (static) magnetic field in a Hall geometry. By using the Monte Carlo method, we find that the known Hall-effect-induced redistribution of electrons among valleys can suppress electron fluctuations with a simultaneous enhancement of the drift vel…

research product

Quantum collision models: Open system dynamics from repeated interactions

We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…

research product

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

research product

Quantum non-Markovian collision models from colored-noise baths

A quantum collision model (CM), also known as repeated interactions model, can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system-bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front a mirror in the regime of non-negligible retardation times.

research product

Resilience of singlet-state extraction against non-optimal resonance conditions

We have recently presented a protocol for extracting the singlet state of two non-interacting high-dimensional spins through post-selection of the internal state of interaction mediators sent in succession [F. Ciccarello et al., arXiv:0710.3855v1]. The scheme requires each mediator's wavevector to obey appropriate resonance conditions. Here we show the robustness of the scheme in the realistic case where such conditions are not sharply fulfilled.

research product

Exciting a Bound State in the Continuum through Multi-Photon Scattering plus Delayed Quantum Feedback

Excitation of a bound state in the continuum (BIC) through scattering is problematic since it is by definition uncoupled. Here, we consider a type of dressed BIC and show that it can be excited in a nonlinear system through multi-photon scattering and delayed quantum feedback. The system is a semi-infinite waveguide with linear dispersion coupled to a qubit, in which a single-photon, dressed BIC is known to exist. We show that this BIC can be populated via multi-photon scattering in the non-Markovian regime, where the photon delay time (due to the qubit-mirror distance) is comparable with the qubit's decay. A similar process excites the BIC existing in an infinite waveguide coupled to two d…

research product

Interaction between hopping and static spins in a discrete network

We consider a process where a spin hops across a discrete network and at certain sites couples to static spins. While this setting is implementable in various scenarios (e.g quantum dots or coupled cavities) the physics of such processes is still basically unknown. Here, we take a first step along this line by scrutinizing a two-site and a three-site lattices, each with two static spins. Despite a generally complex dynamics occurs, we show a regime such that the spin dynamics is described by an effective three-spin chain. Tasks such as entanglement generation and quantum state transfer can be achieved accordingly.

research product

Heat flux dynamics in dissipative cascaded systems

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the …

research product

Entanglement controlled single- electron transmittivity

We consider a system consisting of single electrons moving along a 1D wire in the presence of two magnetic impurities. Such system shows strong analogies with a Fabry - Perot interferometer in which the impurities play the role of two mirrors with a quantum degree of freedom: the spin. We have analysed the electron transmittivity of the wire in the presence of entanglement between the impurity spins. The main result of our analysis is that, for suitable values of the electron momentum, there are two maximally entangled state of the impurity spins the first of which makes the wire transparent whatever the electron spin state while the other strongly inhibits the electron transmittivity. Such…

research product

Collisional picture of quantum optics with giant emitters

The effective description of the weak interaction between an emitter and a bosonic field as a sequence of two-body collisions provides a simple intuitive picture compared to traditional quantum optics methods as well as an effective calculation tool of the joint emitter-field dynamics. Here, this collisional approach is extended to many emitters (atoms or resonators), each generally interacting with the field at many coupling points ("giant" emitter). In the regime of negligible delays, the unitary describing each collision in particular features a contribution of a chiral origin resulting in an effective Hamiltonian. The picture is applied to derive a Lindblad master equation (ME) of a set…

research product

Transverse velocity fluctuations of hot electrons in n-type GaAs in crossed electric and magnetic fields by Monte Carlo methods

In this work we investigate some steady‐state stochastic properties of hot electron dynamics in bulk n‐type GaAs in the presence of crossed, static electric and magnetic fields. To this aim, a single particle, three valleys‐Monte Carlo method is adopted. In order to include the non‐parabolicity of valleys a local parabolic approximation is performed allowing us to get an analytic expression for k(t) during free flights. It is shown how the room temperature‐spectrum of longitudinal velocity fluctuations is markedly affected by the oscillations at the cyclotron frequency and is lowered or increased by the magnetic field depending on the considered frequency. On the contrary, the transverse sp…

research product

Quantum correlations in dissipative gain–loss systems across exceptional points

We investigate the behavior of correlations dynamics in a dissipative gain-loss system. First, we consider a setup made of two coupled lossy oscillators, with one of them subject to a local gain. This provides a more realistic platform to implement parity-time (PT) symmetry circumventing the implementation of a pure gain. We show how the qualitative dynamics of correlations resembles that for a pure-gain-loss setup. The major quantitative effect is that quantum correlations are reduced, while total ones are enhanced. Second, we study the behavior of these correlations across an exceptional point (EP) outside of the PT-symmetric regime of parameters, observing how different behaviors across …

research product

Quasideterministic realization of a universal quantum gate in a single scattering process

We show that a flying particle, such as an electron or a photon, scattering along a one-dimensional waveguide from a pair of static spin-1/2 centers, such as quantum dots, can implement a CZ gate (universal for quantum computation) between them. This occurs quasi-deterministically in a single scattering event, hence with no need for any post-selection or iteration, {and} without demanding the flying particle to bear any internal spin. We show that an easily matched hard-wall boundary condition along with the elastic nature of the process are key to such performances.

research product

Waveguide-QED-based measurement of a reservoir spectral density

The spectral density (SD) function has a central role in the study of open quantum systems (OQSs). We discover a method allowing for a "static" measurement of the SD - i.e., it requires neither the OQS to be initially excited nor its time evolution tracked in time - which is not limited to the weak-coupling regime. This is achieved through one-dimensional photon scattering for a zero-temperature reservoir coupled to the OQS via the rotating wave approximation. We find that the SD profile is a universal simple function of the photon's reflectance and transmittance. As such, it can be straightforwardly inferred from photon's reflection and transmission spectra.

research product

Entanglement-induced electron coherence in a mesoscopic ring with two magnetic impurities

We investigate the Aharonov-Bohm (AB) interference pattern in the electron transmission through a mesoscopic ring in which two identical non-interacting magnetic impurities are embedded. Adopting a quantum waveguide theory, we derive the exact transmission probability amplitudes and study the influence of maximally entangled states of the impurity spins on the electron transmittivity interference pattern. For suitable electron wave vectors, we show that the amplitude of AB oscillations in the absence of impurities is in fact not reduced within a wide range of the electron-impurity coupling constant when the maximally entangled singlet state is prepared. Such state is thus able to inhibit th…

research product

Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy

The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a levy microns) and vertical (hundreds of n…

research product

Atom-field dressed states in slow-light waveguide QED

We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multi-photon dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide a both qualitative and quantitative description of the essential strong…

research product

Composite quantum collision models

A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir $\mathcal R$ as consisting of a large collection of elementary ancillas: the dynamics of the open system $\mathcal{S}$ results from successive "collisions" of $\mathcal{S}$ with the ancillas of $\mathcal R$. Here, we present a general formulation of memoryless {\it composite} CMs, where $\mathcal S$ is partitioned into the very open system under study $S$ coupled to one or more auxiliary systems $\{S_i\}$. Their composite dynamics occurs through internal $S$-$\{S_i\}$ collisions interspersed with external ones involving $\{S_i\}$ and the reservoir $\mathcal R$. W…

research product

Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators

Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispers…

research product

Microscopic biasing of discrete-time quantum trajectories

We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…

research product

Quantum correlations in PT -symmetric systems

Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…

research product

Reducing quantum control for spin - spin entanglement distribution.

We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for such effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum…

research product

A quantum non-Markovian collision model: incoherent swap case

We have recently presented a collision-model-based framework to approach non-Markovian quantum dynamics [Ciccarello F Palma G M and Giovannetti V 2013 Phys. Rev. A 87, 040103(R)]. As a distinctive feature, memory is introduced in a dynamical way by adding extra inter-ancillary collisions to a standard (memoryless) collision model. Here, we focus on the case where such intra-bath collisions are described by incoherent partial swap operations. After briefly reviewing the model, we show how to include temperature as an additional parameter by relaxing the assumption that each bath ancilla is initially in a pure state. We also calculate explicitly the dynamical map entailed by the master equati…

research product

Dynamical decoupling efficiency versus quantum non-Markovianity

We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investig…

research product

Atomic teleportation via cavity QED and position measurements: efficiency analysis

We have recently presented a novel protocol to teleport an unknown atomic state via cavity QED and position measurements. Here, after a brief review of our scheme, we provide a quantitative study of its efficiency. This is accomplished by an explicit description of the measurement process that allows us to derive the fidelity with respect to the atomic internal state to be teleported.

research product

Non-Markovian dynamics from band edge effects and static disorder

It was recently shown [S. Lorenzo et al., Sci. Rep. 7, 42729 (2017)] that the presence of static disorder in a bosonic bath - whose normal modes thus become all Anderson-localised - leads to non-Markovianity in the emission of an atom weakly coupled to it (a process which in absence of disorder is fully Markovian). Here, we extend the above analysis beyond the weak-coupling regime for a finite-band bath so as to account for band edge effects. We study the interplay of these with static disorder in the emergence of non-Markovian behaviour in terms of a suitable non-Markovianity measure.

research product

Local-channel-induced rise of quantum correlations in continuous-variable systems

It was recently discovered that the quantum correlations of a pair of disentangled qubits, as measured by the quantum discord, can increase solely because of their interaction with a local dissipative bath. Here, we show that a similar phenomenon can occur in continuous-variable bipartite systems. To this aim, we consider a class of two-mode squeezed thermal states and study the behavior of Gaussian quantum discord under various local Markovian non-unitary channels. While these in general cause a monotonic drop of quantum correlations, an initial rise can take place with a thermal-noise channel.

research product

System-environment correlations and Markovian embedding of quantum non-Markovian dynamics

We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed "ancillas", which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of "memory depth" where these correlations are established between the syste…

research product

Rising time of entanglement between scattering spins,

We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasi-monochromatic mobile particle, the transient time depends only on the group-velocity and width of the incoming wavepacket and is insensitive to the interaction strength and spin-number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.

research product

Landauer’s Principle in Multipartite Open Quantum System Dynamics

We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evol…

research product

Quantum correlations beyond entanglement in a classical-channel model of gravity

A direct quantization of the Newtonian interaction between two masses is known to establish entanglement, which if detected would witness the quantum nature of the gravitational field. Gravitational interaction is yet compatible also with gravitational decoherence models relying on classical channels, hence unable to create entanglement. Here, we show in paradigmatic cases that, despite the absence of entanglement, a classical-channel model of gravity can still establish quantum correlations in the form of quantum discord between two masses. This is demonstrated for the Kafri-Taylor-Milburn (KTM) model and a recently proposed dissipative extension of this. In both cases, starting from an un…

research product

Heat flux and quantum correlations in dissipative cascaded systems

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system $S$ is globally Lindbladian, one of the subsystems ``sees'' the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at th…

research product

Erratum: Atom-field dressed states in slow-light waveguide QED [Phys. Rev. A93, 033833 (2016)]

We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-…

research product

Non-Hermitian Physics and Master Equations

A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.

research product

Emergence of non-Markovianity in the emission process of an atom in a half-cavity

We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves as a perfect mirror. Specifically, we restrict to the analysis of the process for times shorter than twice the time delay t_d, where t_d is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameters space separating the Markovian and non-Markovian regions.

research product

Dressed emitters as impurities

Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular dispersive effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle in a model-independent context a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the cas…

research product

Hot electron noise in n-type GaAs in crossed electric and magnetic fields

A Monte Carlo analysis of hot electron transport properties of bulk \textit{n}-type GaAs in crossed electric and magnetic fields is presented. %Magnetic field strengths allowing negligible quantum effects in the electron dynamics during free flights are considered. Effects due to the nonparabolicity of bands are properly taken into account by means of a local parabolic approximation. Stochastic properties of electron transport are analyzed by computing the velocity auto-correlation function and the spectral density of fluctuations. It is shown how the presence of the magnetic field is able to deeply modify electron noise up to high electric field strengths. The resulting features of the vel…

research product

Selective writing and read-out of a register of static qubits

We propose a setup comprising an arbitrarily large array of static qubits (SQs), which interact with a flying qubit (FQ). The SQs work as a quantum register, which can be written or read-out by means of the FQ through quantum state transfer (QST). The entire system, including the FQ's motional degrees of freedom, behaves quantum mechanically. We demonstrate a strategy allowing for selective QST between the FQ and a single SQ chosen from the register. This is achieved through a perfect mirror located beyond the SQs and suitable modulation of the inter-SQ distances.

research product

Quantum-state transfer in staggered coupled-cavity arrays

We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.

research product

Mechanism of decoherence-free coupling between giant atoms

Giant atoms are a new paradigm of quantum optics going beyond the usual local coupling. Building on this, a new type of decoherence-free (DF) many-body Hamiltonians was shown in a broadband waveguide. Here, these are incorporated in a general framework (not relying on master equations) and contrasted to dispersive DF Hamiltonians with normal atoms: the two schemes are shown to correspond to qualitatively different ways to match the same general condition for suppressing decoherence. Next, we map the giant atoms dynamics into a cascaded collision model (CM), providing an intuitive interpretation of the connection between non-trivial DF Hamiltonians and coupling points topology. The braided c…

research product

Hermitian and Non-Hermitian Topology from Photon-Mediated Interactions

Light can mediate effective dipole-dipole interactions between atoms or quantum emitters coupled to a common environment. Exploiting them to tailor a desired effective Hamiltonian can have major applications and advance the search for many-body phases. Quantum technologies are mature enough to engineer large photonic lattices with sophisticated structures coupled to quantum emitters. In this context, a fundamental problem is to find general criteria to tailor a photonic environment that mediates a desired effective Hamiltonian of the atoms. Among these criteria, topological properties are of utmost importance since an effective atomic Hamiltonian endowed with a non-trivial topology can be p…

research product

Teleportation of atomic states via position measurements

We present a scheme for conditionally teleporting an unknown atomic state in cavity QED, which requires two atoms and one cavity mode. The translational degrees of freedom of the atoms are taken into account using the optical Stern-Gerlach model. We show that successful teleportation with probability 1/2 can be achieved through local measurements of the cavity photon number and atomic positions. Neither direct projection onto highly entangled states nor holonomous interaction-time constraints are required.

research product

Quantum Non-Markovian Collision Models from Colored-Noise Baths

A quantum collision model (CM), also known as repeated interactions model, can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system–bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front of a mirror in the regime of non-negligible retardation times.

research product

Collision-model-based approach to non-Markovian quantum dynamics

We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and tra…

research product

Class of exact memory-kernel master equations

A well-known situation in which a non-Markovian dynamics of an open quantum system $S$ arises is when this is coherently coupled to an auxiliary system $M$ in contact with a Markovian bath. In such cases, while the joint dynamics of $S$-$M$ is Markovian and obeys a standard (bipartite) Lindblad-type master equation (ME), this is in general not true for the reduced dynamics of $S$. Furthermore, there are several instances (\eg the dissipative Jaynes-Cummings model) in which a {\it closed} ME for the $S$'s state {\it cannot} even be worked out. Here, we find a class of bipartite Lindblad-type MEs such that the reduced ME of $S$ can be derived exactly and in a closed form for any initial produ…

research product

Quantum non-Markovianity induced by Anderson localization

As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence when an atom interacts with a disordered lattice one indeed observes, a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by rele…

research product

Hot electron noise in n-type semiconductors in crossed electroc and magnetic fields

research product

Exotic interactions mediated by a non-Hermitian photonic bath

Photon-mediated interactions between quantum emitters in engineered photonic baths is an emerging area of quantum optics. At the same time, non-Hermitian (NH) physics is currently thriving, spurred by the exciting possibility to access new physics in systems ruled by non-trivial NH Hamiltonians - in particular photonic lattices - which can challenge longstanding tenets such as the Bloch theory of bands. Here, we combine these two fields and study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice described by a NH Hamiltonian. We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties. Photons …

research product

Quantum Non-Markovian Piecewise Dynamics from Collision Models

Recently, a large class of quantum non-Markovian piecewise dynamics for an open quantum system obeying closed evolution equations has been introduced [B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016)]. These dynamics have been defined in terms of a waiting-time distribution between quantum jumps, along with quantum maps describing the effect of jumps and the system's evolution between them. Here, we present a quantum collision model with memory, whose reduced dynamics in the continuous-time limit reproduces the above class of non-Markovian piecewise dynamics, thus providing an explicit microscopic realization.

research product

Exactly solvable model of two three-dimensional harmonic oscillators interacting with the quantum electromagnetic field: The far-zone Casimir-Polder potential

We consider two three-dimensional isotropic harmonic oscillators interacting with the quantum electromagnetic field in the Coulomb gauge and within dipole approximation. Using a Bogoliubov-like transformation, we can obtain transformed operators such that the Hamiltonian of the system, when expressed in terms of these operators, assumes a diagonal form. We are also able to obtain an expression for the energy shift of the ground state, which is valid at all orders in the coupling constant. From this energy shift the nonperturbative Casimir-Polder potential energy between the two oscillators can be obtained. When approximated to the fourth order in the electric charge, the well-known expressi…

research product

Steady-state entanglement activation in optomechanical cavities

Quantum discord, and a number of related indicators, are currently raising a relentless interest as a novel paradigm of non-classical correlations beyond entanglement. Beside merely fundamental aspects, various works have shown that discord is a valuable -- so far largely unexplored -- resource in quantum information processing. Along this line, quite a striking scheme is {entanglement activation}. An initial amount of discord between two disentangled parties of a multipartite system affects the dynamics so as to establish entanglement across a bipartition, which would not arise otherwise. To date, such a process was proven to be achievable only dynamically, i.e., with no guarantee of a sta…

research product

Extraction of Singlet States from Noninteracting High-Dimensional Spins

We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented.

research product

Collision models in quantum optics

AbstractQuantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs’ literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

research product

Electron Fabry-Perot interferometer with two entangled magnetic impurities

We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively…

research product

The Casimir-Polder potential from an exact diagonalization of the Hamiltonian of two three-dimensional harmonic oscillators interacting with the electromagnetic field

research product

Toward computability of trace distance discord

It is known that a reliable geometric quantifier of discord-like correlations can be built by employing the so-called trace distance. This is used to measure how far the state under investigation is from the closest "classical-quantum" one. To date, the explicit calculation of this indicator for two qubits was accomplished only for states such that the reduced density matrix of the measured party is maximally mixed, a class that includes Bell-diagonal states. Here, we first reduce the required optimization for a general two-qubit state to the minimization of an explicit two-variable function. Using this framework, we show next that the minimum can be analytically worked out in a number of r…

research product

Entanglement generation between two spin-s magnetic impurities in a solid via electron scattering

Abstract We present a scheme for generating entanglement between two magnetic impurities in a solid-state system via electron scattering. The scheme applies to impurities of arbitrary quantum spin number. We show that resonance conditions yield generation of a maximally entangled state of the impurities' spins, regardless of the value of the electron–impurity coupling constant and the impurity spin quantum number. The mechanism behind the scheme is explained in terms of resonance-induced selection rules.

research product

Resonant atom-field interaction in large-size coupled-cavity arrays

We consider an array of coupled cavities with staggered inter-cavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform-hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity …

research product

Teleportation between distant qudits via scattering of mobile qubits

We consider a one-dimensional (1D) structure where non-interacting spin-$s$ scattering centers, such as quantum impurities or multi-level atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with {path} detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. {No action over the internal quantum state of both the spin-$s$ particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-seperated static entities in nanostructures by exploiting a very low-control mechanism, namely scattering.

research product

Non-Markovianity of a quantum emitter in front of a mirror

We consider a quantum emitter ("atom") radiating in a one-dimensional (1D) photonic waveguide in the presence of a single mirror, resulting in a delay differential equation for the atomic amplitude. We carry out a systematic analysis of the non-Markovian (NM) character of the atomic dynamics in terms of refined, recently developed notions of quantum non-Markovianity such as indivisibility and information back-flow. NM effects are quantified as a function of the round-trip time and phase shift associated with the atom-mirror optical path. We find, in particular, that unless an atom-photon bound state is formed a finite time delay is always required in order for NM effects to be exhibited. Th…

research product

Photon localization versus population trapping in a coupled-cavity array

We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.

research product

Quantum jump statistics with a shifted jump operator in a chiral waveguide

Resonance fluorescence, consisting of light emission from an atom driven by a classical oscillating field, is well-known to yield a sub-Poissonian photon counting statistics. This occurs when only emitted light is detected, which corresponds to a master equation (ME) unraveling in terms of the canonical jump operator describing spontaneous decay. Formally, an alternative ME unraveling is possible in terms of a shifted jump operator. We show that this shift can result in sub-Poissonian, Poissonian or super-Poissonian quantum jump statistics. This is shown in terms of the Mandel Q parameter in the limit of long counting times, which is computed through large deviation theory. We present a wav…

research product

Implementing quantum gates through scattering between a static and a flying qubit

We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential barrier. An interesting observation is that under resonance conditions the above enables a gate only for isotropic Heisenberg (exchange) interac…

research product

Witnessing nonclassicality through large deviations in quantum optics

Non-classical correlations in quantum optics as resources for quantum computation are important in the quest for highly-specialized quantum devices. The standard way to investigate such effects relies on either the characterization of the inherent features of sources and circuits or the study of the output radiation of a given optical setup. The latter approach demands an extensive description of the output fields, but often overlooks the dynamics of the sources. Conversely, the former discards most of the information about the single trajectories, which are observed in experimental measurements. In this work we provide a natural link between the two frameworks by exploiting the thermodynam…

research product

Dynamics of spontaneous emission in a single-end photonic waveguide

We investigate the spontaneous emission of a two-level system, e.g. an atom or atomlike object, coupled to a single-end, i.e., semi-infinite, one-dimensional photonic waveguide such that one end behaves as a perfect mirror while light can pass through the opposite end with no back-reflection. Through a quantum microscopic model we show that such geometry can cause non-exponential and long-lived atomic decay. Under suitable conditions, a bound atom-photon stationary state appears in the atom-mirror interspace so as to trap a considerable amount of initial atomic excitation. Yet, this can be released by applying an atomic frequency shift causing a revival of photon emission. The resilience of…

research product