0000000000205166

AUTHOR

Charles S. Fadley

Nanosession: Advanced Spectroscopy and Scattering

research product

Interface properties of magnetic tunnel junctionLa0.7Sr0.3MnO3/SrTiO3superlattices studied by standing-wave excited photoemission spectroscopy

The chemical and electronic-structure profiles of magnetic tunnel junction (MTJ) La0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) superlattices have been quantitatively determined via soft and hard x-ray standing-wave excited photoemission, x-ray absorption and x-ray reflectivity, in conjunction with x-ray optical and core-hole multiplet theoretical modeling. Epitaxial superlattice samples consisting of 48 and 120 bilayers of LSMO and STO, each nominally four unit cells thick, and still exhibiting LSMO ferromagnetism, were studied. By varying the incidence angle around the superlattice Bragg condition, the standing wave was moved vertically through the interfaces. By comparing experiment to x-ray optical c…

research product

Band Gap and Electronic Structure of an Epitaxial, SemiconductingCr0.80Al0.20Thin Film

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the Nanotechnology Network Project, MEXT, Japan. C. Papp and B. Balke thank the Humboldt foundation for support. Calculations were done at the Cornell Nanoscale Facility, part of the National Nanotechnology Infrastructure Network (NNIN) funded by NSF. HXPS experiments were approved at the NIMS Beamline Station (Proposal No. 2009A4906)

research product

Electronic structure of EuO spin filter tunnel contacts directly on silicon

We present an electronic structure study of a magnetic oxide/ semiconductor model system, EuO on silicon, which is dedicated for efficient spin injection and spin detection in silicon-based spintronics devices. A combined electronic structure analysis of Eu core levels and valence bands using hard X-ray photoemission spectroscopy was performed to quantify the nearly ideal stoichiometry of EuO “spin filter” tunnel barriers directly on silicon, and the absence of silicon oxide at the EuO/Si interface. These results provide evidence for the successful integration of a magnetic oxide tunnel barrier with silicon, paving the way for the future integration of magnetic oxides into functional spintr…

research product

Probing bulk electronic structure with hard X-ray angle-resolved photoemission.

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of …

research product

Angular and temperature dependence of the magnetic circular dichroism in4dcore-level photoemission from Gd(0001)

We present experimental and theoretical results for the angular and temperature dependence of magnetic circular dichroism in Gd $4d$ core-level photoelectron emission from a Gd(0001) surface in both normal and off-normal directions and with azimuthal variation. Two theoretical approaches are used to model this data: a single electron theory with full multiple scattering of the outgoing photoelectron and a full-relativistic many-electron theory with single scattering only. Thermal effects due to atomic vibrations and the excitation of initial-state multiplets are also included. For normal emission, we find smooth free-atom-like angular variations in emission intensity, while for off-normal e…

research product

Electronic structure of delta-doped $La:SrTiO_{3}$ layers by hard X-ray photoelectron spectroscopy

We have employed hard x-ray photoemission (HAXPES) to study a delta-doped SrTiO3 layer that consisted of a 3-nm thickness of La-doped SrTiO3 with 6% La embedded in a SrTiO3 film. Results are compared to a thick, uniformily doped La:SrTiO3 layer. We find no indication of a band offset for the delta-doped layer, but evidence of the presence of Ti3+ in both the thick sample and the delta-layer, and indications of a density of states increase near the Fermi energy in the delta-doped layer. These results further demonstrate that HAXPES is a powerful tool for the non-destructive investigation of deeply buried doped layers.

research product

Electronic Structure Changes across the Metamagnetic Transition in FeRh via Hard X-Ray Photoemission

International audience; Stoichiometric FeRh undergoes a temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) transition at similar to 350 K. In this Letter, changes in the electronic structure accompanying this transition are investigated in epitaxial FeRh thin films via bulk-sensitive valence-band and core-level hard x-ray photoelectron spectroscopy with a photon energy of 5.95 keV. Clear differences between the AFM and FM states are observed across the entire valence-band spectrum and these are well reproduced using density-functional theory. Changes in the 2p core levels of Fe are also observed and interpreted using Anderson impurity model calculations. These results indicat…

research product

Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structures

We report on the stepwise generation of layered nanostructures via electron beam induced deposition (EBID) using organometallic precursor molecules in ultra-high vacuum (UHV). In a first step a metallic iron line structure was produced using iron pentacarbonyl; in a second step this nanostructure was then locally capped with a 2-3 nm thin titanium oxide-containing film fabricated from titanium tetraisopropoxide. The chemical composition of the deposited layers was analyzed by spatially resolved Auger electron spectroscopy. With spatially resolved x-ray absorption spectroscopy at the Fe L₃ edge, it was demonstrated that the thin capping layer prevents the iron structure from oxidation upon e…

research product

Chemical stability of the magnetic oxide EuO directly on silicon observed by hard x-ray photoemission spectroscopy

We present a detailed study of the electronic structure and chemical state of high-quality stoichiometric EuO and O-rich ${\mathrm{Eu}}_{1}{\mathrm{O}}_{1+x}$ thin films grown directly on silicon without any buffer layer using hard x-ray photoemission spectroscopy (HAXPES). We determine the EuO oxidation state from a consistent quantitative peak analysis of $4f$ valence band and $3d$ core-level spectra. The results prove that nearly ideal, stoichiometric, and homogeneous EuO thin films can be grown on silicon, with a uniform depth distribution of divalent Eu cations. Furthermore, we identify the chemical stability of the EuO/silicon interface from Si $2p$ core-level photoemission. This work…

research product