0000000000207965

AUTHOR

José García-martínez

showing 49 related works from this author

Heat shock response in yeast involver changes in both transcription rates and mRNA stabilities

2011

We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25uC to 37uC. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of …

Llevat de cervesaTranscription GeneticEstrès oxidatiuRNA StabilitySaccharomyces cerevisiaeGene Expressionlcsh:MedicineYeast and Fungal ModelsRNA-binding proteinSaccharomyces cerevisiaeModels BiologicalGenètica molecularModel OrganismsTranscripció genèticaGenome Analysis ToolsTranscription (biology)Gene Expression Regulation FungalYeastsHeat shock proteinMolecular Cell BiologyGeneticsCluster AnalysisRNA MessengerHeat shocklcsh:ScienceBiologyGeneTranscription factorHeat-Shock ProteinsMultidisciplinaryBase SequenceOrganisms Genetically ModifiedbiologySystems Biologylcsh:RRNA FungalLlevats -- GenèticaGenomicsbiology.organism_classificationMolecular biologyFunctional GenomicsCell biologyRegulonRNAlcsh:QGenome Expression AnalysisHeat-Shock ResponseResearch ArticleTranscription Factors
researchProduct

Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast.

2016

The RPB1 mutants in the foot region of RNA polymerase II affect the assembly of the complex by altering the correct association of both the Rpb6 and the Rpb4/7 dimer. Assembly defects alter both transcriptional activity as well as the amount of enzyme associated with genes. Here, we show that the global transcriptional analysis of foot mutants reveals the activation of an environmental stress response (ESR), which occurs at a permissive temperature under optimal growth conditions. Our data indicate that the ESR that occurs in foot mutants depends mostly on a global post-transcriptional regulation mechanism which, in turn, depends on Rpb4-mRNA imprinting. Under optimal growth conditions, we …

0301 basic medicineRNA StabilitySaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityMutantSaccharomyces cerevisiaeBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistryMolecular Imprinting03 medical and health sciencesStructural BiologyTranscription (biology)Stress PhysiologicalGeneticsRNA MessengerImprinting (psychology)Molecular BiologyGeneGeneticsMessenger RNAbiologybiology.organism_classificationCell biology030104 developmental biologyMutationbiology.proteinRNA Polymerase IIBiochimica et biophysica acta
researchProduct

A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway

2019

Iron is an essential micronutrient that participates as a cofactor in a broad range of metabolic processes including mitochondrial respiration, DNA replication, protein translation and lipid biosynthesis. Adaptation to iron deficiency requires the global reorganization of cellular metabolism directed to optimize iron utilization. The budding yeast Saccharomyces cerevisiae has been widely used to characterize the responses of eukaryotic microorganisms to iron depletion. In this report, we used a genomic approach to investigate the contribution of transcription rates to the modulation of mRNA levels during adaptation of yeast cells to iron starvation. We reveal that a decrease in the activity…

IronSaccharomyces cerevisiaeBiophysicsRibosome biogenesisSaccharomyces cerevisiaeMechanistic Target of Rapamycin Complex 1Biochemistry03 medical and health sciencesStructural BiologyRibosomal proteinTranscription (biology)Gene Expression Regulation FungalLipid biosynthesisGeneticsHumansRNA MessengerPhosphorylationMolecular BiologyGene030304 developmental biology0303 health sciencesAnemia Iron-Deficiencybiology030306 microbiologyChemistryIron deficiencyRNA polymerasesRNATORbiology.organism_classificationAdaptation PhysiologicalYeastCell biologyDNA-Binding ProteinsGene Expression RegulationProtein BiosynthesisSignal transductionTranscription
researchProduct

Growth rate controls mRNA turnover in steady and non-steady states.

2016

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

0301 basic medicineRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeyeastTranscriptome03 medical and health sciencesTranscription (biology)Gene Expression Regulation FungalGene expressionmRNA stabilityGrowth rateRNA MessengerMolecular BiologyGenePoint of ViewMessenger RNAbiologyRNA FungalCell Biologybiology.organism_classificationMolecular biologyYeastCell biology030104 developmental biologygrowth rateGene expressiontranscriptionRNA biology
researchProduct

Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing

2017

Since their very beginning, DNA array and next-generation sequencing technologies have been used with Saccharomyces cerevisiae cells. In the last 7 years, an increasing number of studies have focused on the study of wine strains and winemaking. The uncovering of the genomic features of these strains and expression profiles under the different stressful conditions that they have to deal with have contributed significantly to the knowledge of how this amazing microorganism can convert grape must into a drink that has enormously influenced mankind for 7000 years.This review presents a synopsis of DNA array and next-generation sequencing (NGS) technologies and focus mainly in their use in study…

0301 basic medicineWineGeneticsbiology030106 microbiologySaccharomyces cerevisiaeComputational biologybiology.organism_classificationDNA sequencingTranscriptome03 medical and health sciencesYeast in winemaking030104 developmental biologyDNA microarrayFunctional genomicsWinemaking
researchProduct

MOESM2 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 2: Fig. S2. Gene set enrichment analysis (GSEA) for the highest ChIP-exo reads. The genes were ranked according to the number of mapped reads and searched for GO terms enriched at the top of the list in comparison with the rest of the list using GSEA. The resulting list of over-represented GO terms was reduced and visualized with the ReviGO web server ( http://revigo.irb.hr/ ). a) Binding at 25 °C. Left: Results at the Biological Process GO; right: Results at the Cellular Component GO. b) Binding at 37 °C, results are given for the Biological Process GO. The Cellular Component GO gave no results. The size of the circle for each GO term is proportional to the number of genes …

researchProduct

The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors.

2010

In order to study the intragenic profiles of active transcription, we determined the relative levels of active RNA polymerase II present at the 3'- and 5'-ends of 261 yeast genes by run-on. The results obtained indicate that the 3'/5' run-on ratio varies among the genes studied by over 12 log(2) units. This ratio seems to be an intrinsic characteristic of each transcriptional unit and does not significantly correlate with gene length, G + C content or level of expression. The correlation between the 3'/5' RNA polymerase II ratios measured by run-on and those obtained by chromatin immunoprecipitation is poor, although the genes encoding ribosomal proteins present exceptionally low ratios in …

Saccharomyces cerevisiae ProteinsbiologyGeneral transcription factorTranscription GeneticGenes FungalRNA-dependent RNA polymeraseRNA polymerase IISaccharomyces cerevisiaeGene Regulation Chromatin and EpigeneticsMolecular biologyTranscripció genèticaMutationGeneticsRNA polymerase Ibiology.proteinRNATranscription factor II FRNA Polymerase IITranscription factor II DTranscriptional Elongation FactorsTranscription factor II BRNA polymerase II holoenzymeOligonucleotide Array Sequence AnalysisNucleic acids research
researchProduct

MOESM4 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 4: Fig. S4. Gene set enrichment analysis (GSEA) analysis of HL ratios (sus1Δ/WT). Gene Ontology (GO) terms (filtered by means of ReviGO software, see Fig, S2) over-represented at the top and at the bottom of the ranked list of HL ratio values.

researchProduct

MOESM5 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 5: Table S1. Is a table listing strain used in this study.

researchProduct

MOESM1 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 1: Fig. S1. Sus1 occupancy at TFIID-dependent genes was monitored by ChIP analysis of Sus1-TAP in a wild-type strain (Sus1-TAP). As a control, the signal of an isogenic strain bearing no-tagged Sus1 was monitored (No-tag). The occupancy level was calculated as the signal ratio of IP samples in relation to the input signal and relative to an internal control. The resulting normalized ratios were plotted. Error bars represent the SD from at least three independent experiments. Differences in means were assessed by Student’s independent-samples t test. P values

researchProduct

Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms

2004

Most studies of eukaryotic gene regulation have been done looking at mature mRNA levels. Nevertheless, the steady-state mRNA level is the result of two opposing factors: transcription rate (TR) and mRNA degradation. Both can be important points to regulate gene expression. Here we show a new method that combines the use of nylon macroarrays and in vivo radioactive labeling of nascent RNA to quantify TRs, mRNA levels, and mRNA stabilities for all the S. cerevisiae genes. We found that during the shift from glucose to galactose, most genes undergo drastic changes in TR and mRNA stability. However, changes in mRNA levels are less pronounced. Some genes, such as those encoding mitochondrial pro…

Mature messenger RNATranscription GeneticRNA StabilityGenes FungalMolecular Sequence DataBiologySaccharomycesTranscripció genèticaTranscription (biology)Gene Expression Regulation FungalGene expressionP-bodiesRNA MessengerMolecular BiologyGenePhylogenyRegulation of gene expressionMessenger RNAGene knockdownGenomeGene Expression ProfilingGalactoseRNA FungalCell BiologyBlotting NorthernMolecular biologyCell biologyGenòmicaGlucose
researchProduct

The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast

2012

It has been recently stated that stress-responding genes in yeast are enriched in cryptic transcripts and that this is the cause of the differences observed between mRNA amount and RNA polymerase occupancy profiles. Other studies have shown that such differences are mainly due to modulation of mRNA stabilities. Here we analyze the relationship between the presence of cryptic transcripts in genes and their stress response profiles. Despite some of the stress-responding gene groups being indeed enriched in specific classes of cryptic transcripts, we found no statistically significant evidence that cryptic transcription is responsible for the differences observed between mRNA and transcription…

Saccharomyces cerevisiae ProteinsTRTranscription GeneticRNA StabilitySaccharomyces cerevisiaeChIPRNA polymerase IISaccharomyces cerevisiaetranscription rateBiochemistrySaccharomycesGenètica molecularchemistry.chemical_compoundSaccharomycesShort ArticleTranscripció genèticaStress PhysiologicalTranscription (biology)RNA polymeraseGeneticsRNA MessengerGeneGeneticsMessenger RNAbiologyRNAbiology.organism_classificationchemistrybiology.proteinRNARNA Polymerase IIBiotechnology
researchProduct

Genetic differentiation in the striped dolphin Stenella coeruleoalba from European waters according to mitochondrial DNA (mtDNA) restriction analysis

1999

We used mitochondrial DNA (mtDNA) restriction analysis to study genetic variation in 98 striped dolphins (Stenella coeruleoalba) stranded on coasts from different European countries and from animals caught by fisheries. A total of 63 different restriction sites was mapped after digestion of mtDNA with 15 restriction endonucleases that yielded a total of 27 haplotypes. No haplotype was shared between Mediterranean and Atlantic areas. All the analyses indicate the existence of two different populations with a very limited gene flow across the Strait of Gibraltar.

Geneticseducation.field_of_studyMitochondrial DNADolphinsRestriction MappingPopulationGenetic VariationZoologyStenella coeruleoalbaBiologyDNA MitochondrialEuropeRestriction Site PolymorphismRestriction siteRestriction enzymeGenetics PopulationRestriction mapHaplotypesbiology.animalGenetic variationGeneticsAnimalseducationPhylogenyEcology Evolution Behavior and SystematicsMolecular Ecology
researchProduct

Genomic-Wide Methods to Evaluate Transcription Rates in Yeast

2011

Gene transcription is a dynamic process in which the desired amount of an mRNA is obtained by the equilibrium between its transcription (TR) and degradation (DR) rates. The control mechanism at the RNA polymerase level primarily causes changes in TR. Despite their importance, TRs have been rarely measured. In the yeast Saccharomyces cerevisiae, we have implemented two techniques to evaluate TRs: run-on and chromatin immunoprecipitation of RNA polymerase II. These techniques allow the discrimination of the relative importance of TR and DR in gene regulation for the first time in a eukaryote.

Regulation of gene expressionMessenger RNAbiologySaccharomyces cerevisiaeRNA polymerase IIbiology.organism_classificationYeastCell biologychemistry.chemical_compoundchemistryTranscription (biology)RNA polymerasebiology.proteinChromatin immunoprecipitation
researchProduct

A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses

2004

The yeast Saccharomyces cerevisiae has been widely used for the implementation of DNA chip technologies. For this reason and due to the extensive use of this organism for basic and applied studies, yeast DNA chips are being used by many laboratories for expression or genomic analyses. While membrane arrays (macroarrays) offer several advantages, for many laboratories they are not affordable. Here we report that a cluster of four Spanish molecular-biology yeast laboratories, with relatively small budgets, have developed a complete set of probes for the genome of S. cerevisiae. These have been used to produce a new type of macroarray on a nylon surface. The macroarrays have been evaluated and…

macroarraySaccharomyces cerevisiaemacroseries (macroarray)DNA chipchip de DNA
researchProduct

Chimeric Genomes of Natural Hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii

2009

11 pages, 6 figures.-- PMID: 19251887 [PubMed].-- Printed version published Apr 2009.

Molecular Sequence DataSaccharomyces cerevisiaeNatural hybridsWineSaccharomyces cerevisiaeBiologyApplied Microbiology and BiotechnologySaccharomycesGenomeGenètica molecularSaccharomycesMeiosisaCGHEvolutionary and Genomic MicrobiologyDNA FungalGeneGene RearrangementRecombination GeneticGeneticsComparative Genomic HybridizationEcologyChromosomeqRT-PCRSequence Analysis DNAbiology.organism_classificationAneuploidyDNA FingerprintingChromosome DeletionGenome FungalRestriction fragment length polymorphismSaccharomyces kudriavzeviiRecombination pointsPolymorphism Restriction Fragment LengthSaccharomyces kudriavzeviiFood ScienceBiotechnologyGenome hybridization
researchProduct

Fungemia due to Candida guilliermondii in a pediatric and adult population during a 12-year period.

2007

Candida guilliermondii fungemia is usually described in adults with hematologic malignancies, but in children, only 2 episodes have been published. From 1995 to 2006, 7 episodes (5 in children) were detected in our hospital. Molecular typing excluded a common infection source. C. guilliermondii fungemia may occur in children with underlying conditions other than cancer.

Microbiology (medical)AdultMalePediatricsmedicine.medical_specialtyGenotypeAdult populationBiologyMolecular typingmedicineHumansCandida guilliermondiiIntensive care medicineChildMycological Typing TechniquesFungemiaMycosisCandidaMolecular EpidemiologyCandidiasisInfant NewbornInfantGeneral MedicineMiddle Agedbacterial infections and mycosesmedicine.diseaseDNA FingerprintingRandom Amplified Polymorphic DNA TechniqueHospitalizationInfectious DiseasesChild PreschoolFemaleC. guilliermondiiFungemiaDiagnostic microbiology and infectious disease
researchProduct

Regulon-Specific Control of Transcription Elongation across the Yeast Genome

2009

Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is medi…

Cancer ResearchSaccharomyces cerevisiae Proteinslcsh:QH426-470Transcription GeneticComputational Biology/Transcriptional RegulationRNA polymerase IISaccharomyces cerevisiaeRegulonGenètica molecularSaccharomycesTranscripció genèticaTranscription (biology)GeneticsTranscriptional regulationMolecular BiologyRNA polymerase II holoenzymeGeneGenetics (clinical)Ecology Evolution Behavior and SystematicsGeneticsbiologyGenetics and Genomics/Functional GenomicsMolecular Biology/Transcription ElongationHigh Mobility Group ProteinsGenetics and Genomics/Gene ExpressionElongation factorDNA-Binding Proteinslcsh:GeneticsTAF4biology.proteinRNARNA Polymerase IITranscription factor II DGenome FungalTranscriptional Elongation FactorsBiochemistry/Transcription and TranslationResearch Article
researchProduct

RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and initiates a novel mRNA decay pathway

2021

AbstractmRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the exonuclease Xrn1 - a major mRNA synthesis and decay factor. Here we show that nucleocytoplasmic shuttling of Xrn1 and of some of its associated mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Mutations in the two NLSs, which prevent Xrn1 import, compromise transcription and, unexpectedly, also the cytoplasmic decay of ∼50% of the cell…

chemistry.chemical_classificationExonuclease0303 health sciencesbiology030302 biochemistry & molecular biologyMRNA DecayRNACell biology03 medical and health sciencesmedicine.anatomical_structurechemistryCytoplasmTranscription (biology)medicinebiology.proteinNucleusNuclear localization sequence030304 developmental biologyKaryopherin
researchProduct

A genomic study of the inter-ORF distances in Saccharomyces cerevisiae.

2006

The genome of eukaryotic microbes is usually quite compacted. The yeast Saccharomyces cerevisiae is one of the best-known examples. Open reading frames (ORFs) occupy about 75% of the total DNA sequence. The existence of other, non-protein coding genes and other genetic elements leaves very little space for gene promoters and terminators. We have performed an in silico study of inter-ORF distances that shows that there is a minimum distance between two adjacent ORFs that depends on the relative orientation between them. Our analyses suggest that different kinds of promoters and terminators exist with regard to their length and ability to overlap each other. The experimental testing of some p…

Saccharomyces cerevisiaeBioengineeringSaccharomyces cerevisiaeApplied Microbiology and BiotechnologyBiochemistryGenomeDNA sequencingOpen Reading FramesTranscripció genèticaGeneticsORFSLeast-Squares AnalysisGeneGeneticsbiologyReverse Transcriptase Polymerase Chain ReactionPromoterRNA Fungalbiology.organism_classificationBlotting NorthernRandom Amplified Polymorphic DNA TechniqueOpen reading frameTerminator (genetics)Genome FungalBiotechnologyYeast (Chichester, England)
researchProduct

MOESM7 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 7. ChIP-exo data analysis.

Data_FILES
researchProduct

MOESM3 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 3: Fig. S3. Gene set enrichment analysis (GSEA) of TR ratios (sus1Δ/WT). Gene Ontology (GO) terms (filtered by means of ReviGO software, see Fig, S2) over-represented at the top and at the bottom of the ranked list of TR ratio values.

researchProduct

Mitochondrial DNA variability of striped dolphins (Stenella coeruleoalba) in the Spanish Mediterranean waters

1995

Frozen muscle samples from 44 striped dolphins stranded on the Spanish Mediterranean coasts from 1990 to 1993 have been studied by means of mitochondrial DNA (mtDNA) restriction site analysis. Thirty-five of these dolphins were affected by a die-off occurring during this time in the western Mediterranean Sea. The mtDNA from each dolphin was digested with 15 restriction endonucleases that recognized 61 different restriction sites. The specific location of these sites on the mitochondrial gene map allowed us to determine the distribution of variability along this molecule. From the restriction analysis, a total of 15 different composite patterns or haplotypes was obtained and their phylogenet…

Mitochondrial DNAeducation.field_of_studyEcologyPopulationZoologyCetaceaStenella coeruleoalbaAquatic ScienceBiologybiology.organism_classificationRestriction Site PolymorphismRestriction siteRestriction enzymebiology.animalRestriction fragment length polymorphismeducationhuman activitiesEcology Evolution Behavior and Systematics
researchProduct

A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding

2010

The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA …

Transcription GeneticUltraviolet RaysSaccharomyces cerevisiaeMutantADNSaccharomyces cerevisiaeBiologyDNA sequencingGenètica molecularchemistry.chemical_compoundGeneticsTrioxsalenDNA FungalOligonucleotide Array Sequence AnalysisProbabilityTopoisomeraseChromosomeDNAGenomicsbiology.organism_classificationMolecular biologyChromatinNucleosomesChromatinDNA-Binding ProteinsGenòmicaCross-Linking ReagentschemistryNaked DNAbiology.proteinBiophysicsNucleic Acid ConformationMethods OnlineChromosomes FungalDNA TopoisomerasesDNA
researchProduct

Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availabili…

2015

Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The…

GenotypeNitrogenScienceSaccharomyces cerevisiaeDown-RegulationIndustrial fermentationWineSaccharomyces cerevisiaePolymerase Chain Reaction03 medical and health sciencesTranscripció genèticaCluster AnalysisDNA FungalNitrogen cycle030304 developmental biologyWinemaking2. Zero hungerWine0303 health sciencesMultidisciplinarybiology030306 microbiologyGene Expression ProfilingQRfood and beveragesbiology.organism_classificationYeastUp-RegulationGene expression profilingPhenotypeBiochemistryFermentationMedicineFermentationTranscriptomeResearch ArticlePLoS ONE
researchProduct

MOESM6 of The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Additional file 6: Table S2. Is a table listing Primers for ChIP analysis and RT-qPCR.

GeneralLiterature_INTRODUCTORYANDSURVEY
researchProduct

Genomic and Proteomic Analysis of Wine Yeasts

2011

Publisher Summary Saccharomyces cerevisiae is the main microorganism involved in wine fermentation. It has been used as a model organism in molecular biology for many years and is the only wine yeast species for which abundant genomic and proteomic information is available. Most of the techniques currently used in functional genomics and proteomics were initially developed in this yeast. The fact that S. cerevisiae was the first microorganism to be widely used in the development of genome technology allowed other phylogenetically related yeasts to be analyzed subsequently in global sequencing projects, and the use of comparative genomics has since led to important conclusions regarding gene…

WineComparative genomicsFermentation in winemakingYeast in winemakingMetabolomicsbusiness.industrySystems biologyComputational biologyBiologyProteomicsbusinessFunctional genomicsBiotechnology
researchProduct

Production of cecropin A in transgenic rice plants has an impact on host gene expression.

2008

Summary Expression of the cecropin A gene in rice confers resistance to the rice blast fungus Magnaporthe oryzae. In this study, a polymerase chain reaction-based suppression subtractive hybridization approach was used to generate a cDNA macroarray from the elite japonica rice (Oryza sativa L.) cultivar ‘Senia’. Gene expression studies revealed that the expression of components of the protein secretory and vesicular transport machinery is co-ordinately activated at the pre-invasive stage of infection of rice by the blast fungus. Comparisons of gene expression between wild-type and cecropin A plants revealed the over-expression of genes involved in protection against oxidative stress in tran…

animal structuresTransgenePlant ScienceGenetically modified cropsBiologyEndoplasmic ReticulumGene Expression Regulation PlantComplementary DNAGene expressionGeneOligonucleotide Array Sequence AnalysisPlant DiseasesGeneticsExpressed Sequence TagsOryza sativafungifood and beveragesOryzaHydrogen PeroxidePlants Genetically ModifiedGenetically modified riceCell biologyMagnaportheProtein TransportCecropinHost-Pathogen InteractionsAgronomy and Crop ScienceBiotechnologyAntimicrobial Cationic PeptidesPlant biotechnology journal
researchProduct

Common gene expression strategies revealed by genome-wide analysis in yeast

2007

A comprehensive analysis of six variables characterizing gene expression in yeast, including transcription and translation, mRNA and protein amounts, reveals a general tendency for levels of mRNA and protein to be harmonized, and for functionally related genes to have similar values for these variables.

TBX1GeneticsRegulation of gene expressionResearchRNA StabilityStructural geneGenes FungalComputational BiologyGene ExpressionSaccharomyces cerevisiaeBiologyRetinoblastoma-like protein 1EIF4EBP1SaccharomycesGene Expression Regulation FungalMultiprotein ComplexesSNAP23Gene expressionExpressió genèticaCluster AnalysisGeneGenome Biology
researchProduct

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

2019

AbstractThe adjustment of transcription and translation rates to variable needs is of utmost importance for the fitness and survival of living cells. We have previously shown that the global transcription rate for RNA polymerase II is regulated differently in cells presenting symmetrical or asymmetrical cell division. The budding yeast Saccharomyces cerevisiae adopts a particular strategy to avoid that the smaller daughter cells increase their total mRNA concentration with every generation. The global mRNA synthesis rate lowers with a growing cell volume, but global mRNA stability increases. In this paper, we address what the solution is to the same theoretical problem for the RNA polymeras…

Messenger RNACell divisionTranscription (biology)Saccharomyces cerevisiaeRNA polymerase Ibiology.proteinRNA polymerase IIBiologyRibosomal RNAbiology.organism_classificationGeneCell biology
researchProduct

Asymmetric cell division requires specific mechanisms for adjusting global transcription

2017

Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actualmRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a neverending increasing mRNA synthesis rate in sma…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticCell divisionRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeCell fate determinationBiotecnologia03 medical and health sciences0302 clinical medicineRNA Polymerase ITranscription (biology)GeneticsAsymmetric cell divisionRNA MessengerCèl·lules DivisióMolecular BiologyCell SizeMessenger RNAbiologyCell CycleRNADNA-Directed RNA Polymerasesbiology.organism_classificationYeastCell biology030104 developmental biologyCell Division030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes.

2006

A macroarray platform was used to identify binding sites of yeast histone acetyltransferase catalytic subunits and to correlate their positions with acetylation of lysine 14 of histone H3, revealing that Sas3p and Gcn5p are recruited to similar sets of intensely transcribed genes.

GeneticsHistone AcetyltransferasesChromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsResearchAcetylationHistone acetyltransferaseSaccharomyces cerevisiaeSAP30BiologyCell biologyHistonesHistone H3GenòmicaHistone H1Histone methyltransferaseGene Expression Regulation FungalHistone H2Abiology.proteinHistone codeHistone Acetyltransferases
researchProduct

Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets …

2004

The Saccharomyces cerevisiae GRX5 gene codes for a mitochondrial glutaredoxin involved in the synthesis of iron/sulfur clusters. Its absence prevents respiratory growth and causes the accumulation of iron inside cells and constitutive oxidation of proteins. Null ⌬grx5 mu- tants were used as an example of continuously oxidized cells, as opposed to situations in which oxidative stress is instantaneously caused by addition of external oxi- dants. Whole transcriptome analysis was carried out in the mutant cells. The set of genes whose expression was affected by the absence of Grx5 does not significantly overlap with the set of genes affected in respiratory petite mutants. Many Aft1-dependent ge…

Saccharomyces cerevisiae ProteinsTranscription GeneticIronSaccharomyces cerevisiaeMutantProtein Array AnalysisDown-RegulationSaccharomyces cerevisiaeOxidative phosphorylationmedicine.disease_causeProtein oxidationBiochemistryOxygen ConsumptionGene Expression Regulation FungalIron-Binding ProteinsGlutaredoxinmedicineRNA MessengerMolecular BiologyGlutaredoxinsbiologyMembrane ProteinsNuclear ProteinsProteinsRNA-Binding ProteinsCell BiologyBlotting Northernbiology.organism_classificationCarbonUp-RegulationOxygenOxidative StressRegulonCCAAT-Binding FactorDatabases as TopicBiochemistryMutationFrataxinbiology.proteinOxidoreductasesReactive Oxygen SpeciesOxidative stressTranscription FactorsJournal of Biological Chemistry
researchProduct

A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them.

2021

AbstractThe ultimate goal of gene regulation should focus on the protein level. However, as mRNA is an obligate intermediary, and because the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the cellular amount of a given protein can be attained following different strategies. By studying omics datasets for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates), we previously demonstrated the existence of common expression strategies (CES) for functionally-related genes in the yeastSaccharomyces cerevisiae. Here we extend that study to two other eukaryotes: the distantly related yeastSchizosaccharomyces pombeand cultur…

0301 basic medicineTranscription GeneticRNA StabilityCèl·lulesSaccharomyces cerevisiaeved/biology.organism_classification_rank.speciesSaccharomyces cerevisiaeComputational biologytranscription ratetranslation rateArticle03 medical and health sciences0302 clinical medicinePhylogeneticsGene Expression Regulation FungalGene expressionHumansmRNA stabilityModel organismGenelcsh:QH301-705.5OrganismRegulation of gene expressionbiologyPhylogenetic treeved/biologyProkaryotephenogramGeneral Medicinebiology.organism_classification030104 developmental biologyprotein stabilitylcsh:Biology (General)Schizosaccharomyces pombe030217 neurology & neurosurgeryInteraccions RNA-proteïna
researchProduct

The total mRNA concentration buffering system in yeast is global rather than gene-specific

2021

Gene expression in eukaryotes does not follow a linear process from transcription to translation and mRNA degradation. Instead it follows a circular process in which cytoplasmic mRNA decay crosstalks with nuclear transcription. In many instances, this crosstalk contributes to buffer mRNA at a roughly constant concentration. Whether the mRNA buffering concept operates on the total mRNA concentration or at the gene-specific level, and if the mechanism to do so is a global or a specific one, remain unknown. Here we assessed changes in mRNA concentrations and their synthesis rates along the transcriptome of aneuploid strains of the yeast Saccharomyces cerevisiae. We also assessed mRNA concentra…

Saccharomyces cerevisiaeSaccharomyces cerevisiaeTranscriptomemRNA decayTranscription (biology)Gene Expression Regulation FungalGene expressionNMDRNA MessengerMolecular BiologyCrosstalkGeneMessenger RNAbiologyChemistryRNA FungalTranslation (biology)Aneuploidybiology.organism_classificationYeastYeastNonsense Mediated mRNA DecayCell biologyCodon NonsenseGenome FungalTranscriptomeTranscription
researchProduct

CYGD: the Comprehensive Yeast Genome Database.

2005

The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.; International audience; The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular network…

ved/biology.organism_classification_rank.speciesSACCHAROMYCES CEREVISIAE GENOME;COMPREHENSIVE YEAST GENOME DATABASE;CYGD;PROTEIN INTERACTION;EUROPEAN CONSORTIUM;SEQUENCE INFORMATION;YEAST GENOME;SEQUENCED EUKARYOTIC GENOMEcomputer.software_genreGenomeSaccharomycesUser-Computer InterfaceSequence Analysis ProteinDatabases GeneticYEAST GENOME[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]0303 health sciences[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]biologyDatabase030302 biochemistry & molecular biologyEUROPEAN CONSORTIUMArticlesGenomicsCYGD[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]PROTEIN INTERACTIONSEQUENCED EUKARYOTIC GENOMEnucleic acidsCOMPREHENSIVE YEAST GENOME DATABASEBio-informatiqueGenome FungalSEQUENCE INFORMATIONSaccharomyces cerevisiae ProteinsBioinformaticsSaccharomyces cerevisiae610Saccharomyces cerevisiaeGenètica molecularSACCHAROMYCES CEREVISIAE GENOMESaccharomyces03 medical and health sciencesAnnotationGeneticsSIMAPModel organismGene030304 developmental biologyBinding Sitesved/biologyMembrane ProteinsMembrane Transport Proteinsbiology.organism_classificationYeast[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]computerSDV:BIBSTranscription Factors
researchProduct

A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection.

2022

Ribosomal DNA (rDNA) is the genetic loci that encodes rRNA in eukaryotes. It is typically arranged as tandem repeats that vary in copy number within the same species. We have recently shown that rDNA repeats copy number in the yeast Saccharomyces cerevisiae is controlled by cell volume via a feedback circuit that senses cell volume by means of the concentration of the free upstream activator factor (UAF). The UAF strongly binds the rDNA gene promoter, but is also able to repress SIR2 deacetylase gene transcription that, in turn, represses rDNA amplification. In this way, the cells with a smaller DNA copy number than what is optimal evolve to increase that copy number until they reach a numb…

MultidisciplinarySaccharomyces cerevisiae ProteinsDNA Copy Number VariationsSelecció naturalSaccharomyces cerevisiaeSelection GeneticCicle cel·lularDNA RibosomalEvolució (Biologia)FeedbackTranscription FactorsPloS one
researchProduct

The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

2015

We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityPopulationRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeChromatin and EpigeneticsRegulonGenètica molecular03 medical and health sciencesTranscripció genèticaTranscription (biology)GeneticsGene RegulationRNA MessengereducationGeneRegulation of gene expressionGeneticsMessenger RNAeducation.field_of_studyOrganelle BiogenesisbiologyGene regulation Chromatin and EpigeneticsRNA-Binding ProteinsRNAGenes rRNACell biologyGenes Mitochondrial030104 developmental biologyGene Expression Regulationbiology.proteinRNARibosomes
researchProduct

Comprehensive transcriptional analysis of the oxidative response in yeast

2008

The oxidative stress response in Saccharomyces cerevisiae has been analyzed by parallel determination of mRNA levels and transcription rates for the entire genome. A mathematical algorithm has been adapted for a dynamic situation such as the response to stress, to calculate theoretical mRNA decay rates from the experimental data. Yeast genes have been grouped into 25 clusters according to mRNA level and transcription rate kinetics, and average mRNA decay rates have been calculated for each cluster. In most of the genes, changes in one or both experimentally determined parameters occur during the stress response. 24% of the genes are transcriptionally induced without an increase inmRNAlevels…

Time FactorsTranscription GeneticSaccharomyces cerevisiaeResponse elementSaccharomyces cerevisiaeBiochemistryModels BiologicalEvolution MolecularFungal ProteinsTranscription (biology)Gene Expression Regulation FungalP-bodiesProtein biosynthesisCluster AnalysisRNA MessengerRRNA processingMolecular BiologyGeneMessenger RNAbiologyCell Biologybiology.organism_classificationMolecular biologyCell biologyOxygenKineticsOxidative StressModels ChemicalRNARibosomes
researchProduct

Transcriptional Response of Saccharomyces cerevisiae to Different Nitrogen Concentrations during Alcoholic Fermentation▿ †

2007

Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were o…

:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Ciências Agrárias::Biotecnologia Agrária e AlimentarNitrogenSaccharomyces cerevisiaeWineOxidative phosphorylationSaccharomyces cerevisiaeEthanol fermentationApplied Microbiology and BiotechnologySaccharomyces03 medical and health sciencesSaccharomycesTranscripció genèticaGene Expression Regulation FungalExpressió genèticaCluster AnalysisGlycolysis030304 developmental biologyDNA Primers0303 health sciencesScience & TechnologyEcologybiologyEthanol030306 microbiologyReverse Transcriptase Polymerase Chain ReactionGene Expression Profilingfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastRegulonBiochemistryFermentationFermentationFood ScienceBiotechnology
researchProduct

Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation

2007

Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

Ciências Agrárias::Biotecnologia Agrária e Alimentar:Biotecnologia Agrária e Alimentar [Ciências Agrárias]Saccharomyces cerevisiae ProteinsNitrogenSaccharomyces cerevisiaeGenes FungalSaccharomyces cerevisiaeEthanol fermentationBiologyApplied Microbiology and BiotechnologySaccharomycesGenètica molecular03 medical and health sciencesSaccharomycesGene Expression Regulation Fungal030304 developmental biologyOligonucleotide Array Sequence AnalysisWineGenetics0303 health sciencesScience & TechnologyEcologyModels Genetic030306 microbiologyNitrogen deficiencyReverse Transcriptase Polymerase Chain Reactionfood and beveragesbiology.organism_classificationPhysiology and BiotechnologyYeastYeast in winemakingBiochemistryAlcoholsFermentationFermentationFood ScienceBiotechnology
researchProduct

DNA chips for yeast biotechnology. The case of wine yeasts.

2002

The yeast Saccharomyces cerevisiae is one of the most popular model organisms. It was the first eukaryote whose genome was sequenced. Since then many functional analysis projects have tried to find the function of many genes and to understand its metabolism in a holistic way. Apart from basic science this microorganism is of great interest in several biotechnology processes, such as winemaking. Only global studies of the cell as a whole can help us to understand many of the technical problems facing winemaking. DNA chip technology is one of the most promising tools for the analysis of cell physiology. Yeast has been the model organism for the development of this technique. Many of the studi…

Transcription Geneticved/biology.organism_classification_rank.speciesSaccharomyces cerevisiaeGene ExpressionBioengineeringWineSaccharomyces cerevisiaeBiologyApplied Microbiology and BiotechnologyGenomeModel organismWinemakingOligonucleotide Array Sequence AnalysisWineEthanolved/biologybusiness.industryfood and beveragesGeneral MedicineSequence Analysis DNAbiology.organism_classificationBiological EvolutionYeastBiotechnologyYeast in winemakingGene Expression RegulationFermentationCarbohydrate MetabolismDNA microarrayGenome FungalbusinessBiotechnologyJournal of biotechnology
researchProduct

The SAGA/TREX‑2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally

2018

Abstract Background Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt–Ada–Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. Results Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitmen…

0301 basic medicineSaccharomyces cerevisiae Proteinslcsh:QH426-470Transcription GeneticSAGASaccharomyces cerevisiaeBiologySus103 medical and health sciencesTranscripció genèticaTranscription (biology)Stress PhysiologicalGene Expression Regulation FungalCoactivatorGeneticsTranscriptional regulationRNA MessengerPromoter Regions GeneticMolecular BiologyGeneGeneral transcription factorResearchEukaryotic transcriptionNuclear ProteinsRNA-Binding ProteinsRNA FungalCell biologylcsh:Genetics030104 developmental biologyChIP-exoRegulatory sequenceTrans-ActivatorsTranscription factor II DTranscriptionGenèticaProtein BindingGRO
researchProduct

Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.

1998

Abstract The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very low frequencies. There is no statistical evidence of positive Darwinian selection acting on the mitochondrial DNA variants according to Tajima's neutrality test. Two experimental populations, with one replicate each, were established with flies having a heterogeneous nuclear genetic back…

Mitochondrial DNAPopulationRestriction MappingAnimals WildBiologyDNA MitochondrialEvolution MolecularMediterranean IslandsGene FrequencyAnimals LaboratoryGenetic variationGeneticsAnimalseducationAllele frequencyGeneticseducation.field_of_studyModels StatisticalModels GeneticHaplotypeGenetic VariationDrosophila subobscuraEuropeFixation (population genetics)Natural population growthHaplotypesEvolutionary biologySpainDrosophilaResearch Article
researchProduct

Genomic response programs of Candida albicans following protoplasting and regeneration

2005

Transcription profiling of Candida albicans cells responding to the elimination of the wall (protoplasts) and posterior regeneration was explored. DNA microarrays were used to measure changes in the expression of 6039 genes, and the upregulated genes during regeneration at 28 degrees C were assigned to fourteen categories. A total of 407 genes were upregulated during the process, of which 144 reached a maximum after 1 h. MKC1, a gene encoding a member of the regulatory pathway involved in cell wall integrity was overexpressed. Time-dependent expression divided the genes into 40 clusters. Clusters 1-19 were highly expressed initially (time 0) and downregulated following incubation, whereas t…

Regulation of gene expressionbiologyGene Expression ProfilingProtoplastsbiology.organism_classificationMicrobiologyGenomeMolecular biologyFungal ProteinsGene expression profilingCell WallTranscription (biology)Gene Expression Regulation FungalCandida albicansGene expressionGeneticsCluster AnalysisRegenerationGenome FungalDNA microarrayCandida albicansGeneOligonucleotide Array Sequence AnalysisFungal Genetics and Biology
researchProduct

The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

2019

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…

0301 basic medicineExonucleaseCell biologySaccharomyces cerevisiae ProteinsTranscription GeneticMolecular biologyScienceRNA StabilityGenetic VectorsGeneral Physics and AstronomyGene Expression02 engineering and technologySaccharomyces cerevisiaeEndoplasmic ReticulumGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesEukaryotic translationTranscription (biology)Gene Expression Regulation FungalGene expression540 ChemistryProtein biosynthesisRNA MessengerCloning Molecularlcsh:ScienceRegulation of gene expressionMultidisciplinarybiologyChemistryGene Expression ProfilingQMembrane ProteinsTranslation (biology)General Chemistry021001 nanoscience & nanotechnologyRibosomeRecombinant Proteins3. Good healthCell biology030104 developmental biologyMembrane proteinProtein BiosynthesisExoribonucleasesbiology.protein570 Life sciences; biologylcsh:Q0210 nano-technologySignal Transduction
researchProduct

Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast

2021

[Abstract] The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell s…

Cancer ResearchTranscription GeneticCellGene ExpressionRNA polymerase IIYeast and Fungal ModelsProtein SynthesisQH426-470HaploidyBiochemistryPolymerasesSirtuin 2Transcription (biology)RNA Polymerase IHomeostasisCell Cycle and Cell DivisionGenetics (clinical)Silent Information Regulator Proteins Saccharomyces cerevisiaebiologyTranscriptional ControlEukaryotaChemical SynthesisGenomicsCell biologyNucleic acidsmedicine.anatomical_structureExperimental Organism SystemsRibosomal RNARNA polymeraseCell ProcessesRNA Polymerase IIResearch ArticleCell biologyCellular structures and organellesSaccharomyces cerevisiae ProteinsBiosynthetic TechniquesSaccharomyces cerevisiaeSaccharomyces cerevisiaeResearch and Analysis MethodsDNA RibosomalSaccharomycesModel OrganismsCyclinsDNA-binding proteinsmedicineRNA polymerase IGeneticsGene RegulationNon-coding RNAMolecular BiologyEcology Evolution Behavior and SystematicsCell SizeMessenger RNACèl·lules eucariotesOrganismsFungiRNABiology and Life SciencesProteinsGenes rRNARibosomal RNAModels Theoreticalbiology.organism_classificationYeastGenòmicabiology.proteinAnimal StudiesRNARibosomes
researchProduct

Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking

2020

A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5′–3′ RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel …

Saccharomyces cerevisiae ProteinsOsmotic shockTranscription GeneticRNA StabilityRNA polymerase IISaccharomyces cerevisiaeBiology03 medical and health sciences0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesMessenger RNABacktrackingRNA FungalCell BiologyCell biologyCrosstalk (biology)Cytoplasm030220 oncology & carcinogenesisExoribonucleasesbiology.proteinRNA Polymerase IIResearch Paper
researchProduct

Growth rate controls mRNA turnover in steady and non-steady states

2020

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

researchProduct