0000000000236380

AUTHOR

Gary P. Centers

Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer

Physical review letters 122(19), 191302 (2019). doi:10.1103/PhysRevLett.122.191302

research product

Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is …

research product

Stochastic fluctuations of bosonic dark matter

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

research product

Overview of the Cosmic Axion Spin Precession Experiment (CASPEr)

An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses \({\lesssim }10^{…

research product

Intensity interferometry for ultralight bosonic dark matter detection

Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…

research product

Wu et al. Reply:

research product

The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

The Cosmic Axion Spin Precession Experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses $ m_{\rm a} \sim 10^{-14}$--$10^{-6}…

research product

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.

Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802

research product

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…

research product

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

The nature of dark matter, the invisible substance making up over $80\%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, w…

research product

Spectral signatures of axionlike dark matter

We derive spectral line shapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these line shapes is needed to optimize an experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to the directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earth's rotational and o…

research product