0000000000243930
AUTHOR
Rafael Mata
Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range
Experimental data of secondary emission yield (SEY) and electron emission spectra of Pt under electron irradiation for normal incidence and primary energies lower than 1 keV are presented. Several relevant magnitudes, as total SEY, elastic backscattering probability, secondary emission spectrum, and backscattering coefficient, are given for different primary energies. These magnitudes are compared with theoretical or semiempirical formulas commonly used in the related literature.
Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models
[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.
Reversed polarized emission in highly strained a-plane GaN/AlN multiple quantum wells
The polarization of the emission from a set of highly strained $a$-plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite $c$ axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the $c$ axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been p…
The structural properties of GaN/AlN core-shell nanocolumn heterostructures.
International audience; The growth and structural properties of GaN/AlN core-shell nanowire heterostructures have been studied using a combination of resonant x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy experiments. For a GaN core of 20 nm diameter on average surrounded by a homogeneous AlN shell, the built-in strain in GaN is found to agree with theoretical calculations performed using a valence force field model. It is then concluded that for an AlN thickness up to at least 12 nm both core and shell are in elastic equilibrium. However, in the case of an inhomogeneous growth of the AlN shell caused by the presence of steps on the sides of the …
Growth, structural and optical properties of GaN/AlN and GaN/GaInN nanowire heterostructures
Abstract After discussing the GaN NW nucleation issue, we will present the structural properties of axial and radial (i.e. core/shell) GaN/AlN NW heterostructures and adress the issue of critical thickness during the growth of such heterostructures. Next, we will present the growth of InGaN NWs on a GaN NW base. It will be shown that the morphology and structural properties of the InGaN NW sections depend on the In content: for high In content a flat top is observed and plastic relaxation is occuring, with mismatch dislocations formed at the InGaN/GaN interface. By contrast, for In content below 25% InGaN NWs exhibit a pencil-like shape assigned to a purely elastic strain relaxation process…
Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature
Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…
The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures.
The strain state of 1 and 2.5 nm thick GaN insertions in GaN/AlN nanocolumn heterostructures has been studied by means of a combination of high resolution transmission electron microscopy, Raman spectroscopy and theoretical modeling. It is found that 2.5 nm thick GaN insertions are partially relaxed, which has been attributed to the presence of dislocations in the external AlN capping layer, in close relationship with the morphology of GaN insertions and with the AlN capping mechanism. The observed plastic relaxation in AlN is consistent with the small critical thickness expected for GaN/AlN radial heterostructures.
Anisotropic polarization of non‐polar GaN quantum dot emission
We report on experimental and theoretical studies of the polarization selection rules of the emission of non-polar GaN/AlN self-assembled quantum dots. Time-integrated and time-resolved photoluminescence measurements have been performed to determine the degree of polarization. It is found that the emission of some samples can be predominantly polarized parallel to the wurtzite c axis, in striking difference with the previously reported results for bulk GaN and its heterostructures, in which the emission was preferentially polarized perpendicular to the c axis. Theoretical calculations based on an 8-band k·p model are used to analyze the relative importance of strain, confinement and quantum…
Novel multipactor studies in RF satellite payloads: Single-carrier digital modulated signals and ferrite materials
In this work it is reviewed the most novel advances in the multipactor RF breakdown risk assessment devoted to RF satellite microwave passive devices employed in space telecommunication systems. On one side, it is studied the effect of transmitting a single-carrier digital modulated signal in the multipactor RF voltage threshold in a coaxial line. On the other hand, an analysis of the multipactor phenomenon in a parallel-plate waveguide containing a magnetized ferrite slab it is presented.
Surface optical phonon modes in GaN nanowire arrays: Dependence on nanowire density and diameter
We present a systematic study, by means of Raman scattering, of the surface optical modes of GaN nanowires (NW) as a function of the fill factor, defined as the relative concentration of GaN NWs and the surrounding air. We show that changes in the fill factor from 0.8 to 0.3 result in a shift of the surface optical mode of more than 60 cm${}^{\ensuremath{-}1}$, which is explained by theoretical calculations of surface vibrations for a cylindrical nanowire based on the dielectric continuum model. Two cases are considered: the effective dielectric function approximation (Maxwell-Garnett approximation) and a model for isolated NWs with various diameters. We conclude, in agreement with the Maxw…
Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite
In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical direction between the plates in order to magnetize the ferrite. Numerical simulations using an in-house 3-D code are carried out to obtain the multipactor RF voltage threshold in this kind of structures. The presented results show that the multipactor RF voltage threshold at certain frequencies becomes considerably lower than for the corresponding classical metallic parallel-plate waveguide with the same vacuum gap