0000000000329739

AUTHOR

G. M. Palma

showing 40 related works from this author

Robust non-Markovianity in ultracold gases

2012

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

PhysicsCondensed Matter::Quantum GasesWork (thermodynamics)Quantum PhysicsCold Atoms Open Quantum System Markovian Master equations/dk/atira/pure/subjectarea/asjc/3100/3107/dk/atira/pure/subjectarea/asjc/3100/3104Thermal fluctuationsFOS: Physical sciencesScattering lengthPhysics and Astronomy(all)Condensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics/dk/atira/pure/subjectarea/asjc/3100Quantum Gases (cond-mat.quant-gas)Quantum mechanicsQubitThermalSensitivity (control systems)Condensed Matter - Quantum Gases/dk/atira/pure/subjectarea/asjc/2600/2610Quantum Physics (quant-ph)Mathematical PhysicsCurse of dimensionality
researchProduct

Physical model for the generation of ideal resources in multipartite quantum networking

2010

We propose a physical model for generating multipartite entangled states of spin-$s$ particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies on the management of stationary and well separated spins. Among the generable states, there is a class of $N$-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.

PhysicsQuantum PhysicsQuantum networkFOS: Physical sciencesQuantum PhysicsQuantum entanglementTopologyAtomic and Molecular Physics and OpticsMultipartiteQuantum stateQuantum mechanicsQubitentanglement transport quantum information processingW stateQuantum informationQuantum Physics (quant-ph)Quantum information science
researchProduct

Quantum synchronization as a local signature of super- and subradiance

2017

We study the relationship between the collective phenomena of super- and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of longstanding coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occu…

PhysicsQuantum PhysicsDephasingFOS: Physical sciencesquantum syncronizationopen quantum systemsDissipation01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmas[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanicsReciprocity (electromagnetism)Qubit0103 physical sciencesDissipative system010306 general physicsGround stateQuantum Physics (quant-ph)superradianceQuantumComputingMilieux_MISCELLANEOUSCoherence (physics)Physical Review A
researchProduct

Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

2009

We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum decoherenceDephasingDegenerate energy levelsTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesBose Einstein condensates open quantum systems quantum information theoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectddc:law.inventionlawQuantum Gases (cond-mat.quant-gas)Quantum mechanicsMaster equationCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensateBosonCoherence (physics)
researchProduct

Resilience of singlet-state extraction against non-optimal resonance conditions

2008

We have recently presented a protocol for extracting the singlet state of two non-interacting high-dimensional spins through post-selection of the internal state of interaction mediators sent in succession [F. Ciccarello et al., arXiv:0710.3855v1]. The scheme requires each mediator's wavevector to obey appropriate resonance conditions. Here we show the robustness of the scheme in the realistic case where such conditions are not sharply fulfilled.

PhysicsFABRY-PEROT-INTERFEROMETERPhysics and Astronomy (miscellaneous)SpinsCondensed matter physicsquantum information theory transport in mesoscopic systemsState (functional analysis)Resonance (particle physics)Robustness (computer science)Quantum mechanicsSCATTERINGWave vectorResilience (materials science)Singlet stateENTANGLEMENT
researchProduct

Work fluctuations in bosonic Josephson junctions

2016

We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that…

---Josephson effectPopulationFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasFock spacesymbols.namesakequant-phUltracold atomQuantum mechanics0103 physical sciences010306 general physicseducationPhysicsCondensed Matter::Quantum GasesQuantum Physicseducation.field_of_studyOptimal controlAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)symbolsProbability distributionCondensed Matter - Quantum GasesHamiltonian (quantum mechanics)Quantum Physics (quant-ph)cond-mat.quant-gas
researchProduct

When Casimir meets Kibble–Zurek

2012

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system an…

Quantum phase transitionElectromagnetic fieldPhysicsPhotonCritical phenomenadynamical casimir effect cavity QEDCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCasimir effectQuantum mechanicsAtomBoundary value problemMathematical PhysicsBoson
researchProduct

Entanglement generation and protection by detuning modulation

2006

We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.

PhysicsQuantum PhysicsQuantum discordCavity quantum electrodynamicsSENSITIVE POPULATION DECAYFOS: Physical sciencesTheoryofComputation_GENERALSPONTANEOUS EMISSIONQuantum PhysicsQuantum entanglementTopologyAtomic and Molecular Physics and Optics2-ATOM DICKE-MODELPostselectionQuantum mechanicsQubitDECOHERENCE-FREE SUBSPACESW stateQuantum Physics (quant-ph)Amplitude damping channelBAND SQUEEZED VACUUMQuantum teleportationPhysical Review A
researchProduct

Potential and limitations of quantum extreme learning machines

2023

Quantum reservoir computers (QRC) and quantum extreme learning machines (QELM) aim to efficiently post-process the outcome of fixed -- generally uncalibrated -- quantum devices to solve tasks such as the estimation of the properties of quantum states. The characterisation of their potential and limitations, which is currently lacking, will enable the full deployment of such approaches to problems of system identification, device performance optimization, and state or process reconstruction. We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements, and provide an explicit characterisation of the information exactly retriev…

Quantum PhysicsFOS: Physical sciencesquantum machine learningGeneral Physics and Astronomyquantum extreme learningQuantum Physics (quant-ph)quantum reservoir computingSettore FIS/03 - Fisica Della Materia
researchProduct

Quantifying, characterizing, and controlling information flow in ultracold atomic gases

2011

We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsFlux qubitFOS: Physical sciencesQuantum simulator-One-way quantum computerAtomic and Molecular Physics and OpticsPhase qubitOpen quantum systemQuantum Gases (cond-mat.quant-gas)QubitBECs entanglement quantum information theory open quantum systemsStatistical physicsQuantum informationAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Trapped ion quantum computerPhysical Review A
researchProduct

A scheme for entanglement extraction from a solid

2006

Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However this entanglement may appear a mere mathematical artifact of the typical symmetrization procedure of many-body wave function in solid state physics. Here we show that this entanglement is physical demonstrating the principles of its extraction from a typical solid state system by scattering two particles off the system. Moreover we show how to simulate this process using present-day optical lattices technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum…

PhysicsQuantum PhysicsSolid-state physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringProcess (computing)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementQuantum PhysicsHeat capacityMagnetic susceptibilitySTATEATOMSMesoscale and Nanoscale Physics (cond-mat.mes-hall)QUANTUM PHASE-TRANSITIONSymmetrizationStatistical physicsWave functionQuantum Physics (quant-ph)
researchProduct

Master equation for cascade quantum channels: a collisional approach

2012

It has been recently shown that collisional models can be used to derive a general form for the master equations which describe the reduced time evolution of a composite multipartite quantum system, whose components "propagate" in an environmental medium which induces correlations among them via a cascade mechanism. Here we analyze the fundamental assumptions of this approach showing how some of them can be lifted when passing into a proper interaction picture representation.

Physicsopen quantum systems quantum correlation collision modelQuantum PhysicsOpen quantum systems dynamicTime evolutionQuantum channelsFOS: Physical sciencesCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaMultipartiteClassical mechanicsCascadeInteraction pictureMaster equationQuantum systemQuantum InformationRepresentation (mathematics)Quantum Physics (quant-ph)Quantum
researchProduct

Photon Production from the Vacuum Close to the Superradiant Transition: Linking the Dynamical Casimir Effect to the Kibble-Zurek Mechanism

2012

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral prop…

Quantum phase transitionKibble-Zurek mechanismElectromagnetic fieldPhysicsPhotonCavity quantum electrodynamicsGeneral Physics and AstronomyDynamical Casimir Effect Cold Atoms Cavity QEDRadiation01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasCasimir effectQuantum mechanics0103 physical sciences010306 general physicsQuantum fluctuation
researchProduct

A deeper insight into quantum state transfer from an information flux viewpoint

2008

We use the recently introduced concept of information flux in a many-body register in order to give an alternative viewpoint on quantum state transfer in linear chains of many spins.

PhysicsQuantum PhysicsPhysics and Astronomy (miscellaneous)SpinsOrder (business)quantum information theoryQuantum mechanicsQuantum state transferFOS: Physical sciencesFluxMathematics::Metric GeometryQuantum Physics (quant-ph)
researchProduct

Landauer’s Principle in Multipartite Open Quantum System Dynamics

2015

We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evol…

PhysicsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsStatistical Mechanics (cond-mat.stat-mech)Open Quantum System DynamicsFOS: Physical sciencesGeneral Physics and AstronomyLandauer's principle01 natural sciences010305 fluids & plasmasPhysics and Astronomy (all)Open quantum systemMultipartiteLandauer's Principle in MultipartiteClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesQuantum systemQuantum informationQuantum Physics (quant-ph)010306 general physicsQuantum statistical mechanicsCondensed Matter - Statistical MechanicsPhysical Review Letters
researchProduct

Remnants of Anderson localization in prethermalization induced by white noise

2017

We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing that the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermedia…

---Anderson localizationGeneric propertyFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasMetastability0103 physical sciencesElectronicOptical and Magnetic MaterialsStatistical physics010306 general physicsQuantumCondensed Matter - Statistical MechanicsElectronic Optical and Magnetic Materials; Condensed Matter PhysicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)SpinsElectronic Optical and Magnetic MaterialWhite noiseCondensed Matter PhysicsTransverse planeQuantum Physics (quant-ph)Coherence (physics)Physical Review B
researchProduct

Teleportation-induced correlated quantum channels.

2009

Quantum teleportation of a n-qubit state performed using as entangled resource a general bipartite state of 2n qubits instead of n Bell states is equivalent to a correlated Pauli channel. This provides a new characterization of such channels in terms of many-body correlation functions of the teleporting media. Our model is then generalized to the Continuous Variable case. We show that this new representation provides a relatively simple method for determining whether a correlated quantum channel is able to reliably convey quantum messages by studying the entanglement properties of the teleportation mediating system.

PhysicsBell stateQuantum PhysicsFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementQuantum channelQuantum capacityQuantum Physics01 natural sciences010305 fluids & plasmasComputer Science::Emerging TechnologiesQuantum mechanicsQubit0103 physical sciencesquantum information theoryquantum channelsQuantum informationQuantum Physics (quant-ph)010306 general physicsAmplitude damping channelQuantum teleportationPhysical review letters
researchProduct

Accumulation of entanglement in a continuous variable memory

2007

We study the accumulation of entanglement in a memory device built out of two continuous variable (CV) systems. We address the case of a qubit mediating an indirect joint interaction between the CV systems. We show that, in striking contrast with respect to registers built out of bidimensional Hilbert spaces, entanglement superior to a single ebit can be efficiently accumulated in the memory, even though no entangled resource is used. We study the protocol in an immediately implementable setup, assessing the effects of the main imperfections.

PhysicsQuantum PhysicsQuantum discordGeneral Physics and AstronomyFOS: Physical sciencesMASERQuantum PhysicsQuantum capacityQuantum entanglementTopologyCondensed Matter - Other Condensed MatterPOVMSTATESQuantum stateQuantum mechanicsQubitQuantum convolutional code2 CAVITIESAmplitude damping channelQuantum Physics (quant-ph)QUANTUMTELEPORTATIONOther Condensed Matter (cond-mat.other)
researchProduct

Hybrid optomechanics for Quantum Technologies

2014

We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matter-like system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical non-locality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering…

Physicsquantum technologiesQuantum PhysicsTechnologyCondensed Matter - Mesoscale and Nanoscale PhysicsThybrid quantum mechanicsFOS: Physical sciencesPhysics::Opticsquantum optomechanics7. Clean energyEngineering physicsSettore FIS/03 - Fisica Della MateriaQuantum technologyquantum state engineeringMesoscale and Nanoscale Physics (cond-mat.mes-hall)quantum communicationQuantum Physics (quant-ph)Quantum information scienceQuantum state engineeringOptomechanics
researchProduct

Geometric-phase backaction in a mesoscopic qubit-oscillator system

2012

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro- and nanomechanical devices coupled to an effective two-level system. © 2012 American Physical Society.

Quantum phase transitionPhysicsNANOMECHANICAL RESONATOR; BACK-ACTION; QUANTUM; OPTOMECHANICS; MECHANICS; EVOLUTION; MODEAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPhase qubitOptical phase spaceClassical mechanicsGeometric phaseQuantum harmonic oscillatorPhase spaceQubitQuantum mechanicsGeometric phases atomic physics quantum interferometryHarmonic oscillator
researchProduct

Tunable Polarons in Bose-Einstein Condensates

2017

A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequ…

ScienceFOS: Physical sciencesQuantum simulatorPolaron01 natural sciencesSettore FIS/03 - Fisica Della MateriaArticle010305 fluids & plasmaslaw.inventionsymbols.namesakeImpurityUltracold atomlaw/dk/atira/pure/subjectarea/asjc/10000103 physical sciencesPhysics::Atomic PhysicsGeneral010306 general physicsCondensed Matter::Quantum GasesPhysicsQuantum PhysicsMultidisciplinaryCondensed Matter::OtherPolaronsQRLaser3. Good healthCoupling (physics)Quantum Gases (cond-mat.quant-gas)symbolsMultidisciplinary ultracold atoms polaronsMedicine-----Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Raman spectroscopyBose–Einstein condensateScientific Reports
researchProduct

Transitionless quantum driving in open quantum systems

2014

Abstract We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

PhysicsDDC 530 / PhysicsGeneral Physics and Astronomyquantum control; quantum open system; superadiabatic dynamics; Physics and Astronomy (all)Physics and Astronomy(all)Settore FIS/03 - Fisica Della Materiasuperadiabatic dynamicsQuantum SystemsPhysics and Astronomy (all)Formalism (philosophy of mathematics)Classical mechanics/dk/atira/pure/subjectarea/asjc/3100quantum open systemMaster equationtransitionless quantum driving adiabatic theorem optima control open quantum systemddc:530quantum controlQuantumQuantenmechanisches System
researchProduct

Transfer of arbitrary two-qubit states via a spin chain

2015

We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 8…

FOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaMagnetizationsymbols.namesakeAtomic and Molecular PhysicsLattice (order)Quantum mechanicstwo-qubit statesQuantum informationQuantum information sciencespin chainPhysicsQuantum Physicsspin chain quantum state transfer quantum communicationquantum state transferSpin quantum numberAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterQubitsymbolsand OpticsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Curse of dimensionalityOther Condensed Matter (cond-mat.other)
researchProduct

Structural change in multipartite entanglement sharing: a random matrix approach

2010

We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…

PhysicsQuantum PhysicsQuantum decoherencequantum information theory open quantum systemsFOS: Physical sciencesQuantum entanglementQuantum PhysicsSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsQuantum mechanicsQubitStatistical physicsW stateQuantum Physics (quant-ph)Random matrixRandomness
researchProduct

Entanglement production by quantum error correction in the presence of correlated environment

2003

We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.

PhysicsQuantum PhysicsDephasingCondensed Matter (cond-mat)FOS: Physical sciencesGeneral Physics and AstronomyTheoryofComputation_GENERALQuantum entanglementData_CODINGANDINFORMATIONTHEORYQuantum PhysicsCondensed MatterQuantum error correctionQuantum mechanicsQubitProduction (computer science)Quantum Physics (quant-ph)Error detection and correctionQuantum
researchProduct

Cold-Atom-Induced Control of an Optomechanical Device

2010

We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.

Field (physics)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)01 natural sciences010305 fluids & plasmaslaw.invention/dk/atira/pure/subjectarea/asjc/3100lawUltracold atomQuantum mechanics0103 physical sciencesCold Atoms nanodevices entanglement open systemsQuantum information010306 general physicsPhysicsCondensed Matter::Quantum GasesMesoscopic physicsQuantum PhysicsCavity quantum electrodynamicsNonlinear opticsQuantum Gases (cond-mat.quant-gas)Physics::Accelerator PhysicsAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensate
researchProduct

Non-classicality of optomechanical devices in experimentally realistic operating regimes

2013

Enforcing a non-classical behavior in mesoscopic systems is important for the study of the boundaries between quantum and classical world. Recent experiments have shown that optomechanical devices are promising candidates to pursue such investigations. Here we consider two different setups where the indirect coupling between a three-level atom and the movable mirrors of a cavity is achieved. The resulting dynamics is able to conditionally prepare a non-classical state of the mirrors by means of projective measurements operated over a pure state of the atomic system. The non-classical features are persistent against incoherent thermal preparation of the mechanical systems and their dissipati…

PhysicsQuantum PhysicsMesoscopic physicsQuantum decoherencequantum optomechanical systems entanglement open quantum systems mesoscopic quantum systemsCavity quantum electrodynamicsFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMechanical systemChemical couplingQuantum mechanicsThermalAtomQuantum Physics (quant-ph)Quantum
researchProduct

Collision-model-based approach to non-Markovian quantum dynamics

2013

We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and tra…

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsMarkov processFOS: Physical sciencesAtomic and Molecular Physics and Opticssymbols.namesakeExact solutions in general relativityClassical mechanicsSPINNon-Markovian open quantum systems collision modelsMaster equationDissipative systemsymbolsStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct

Information-flux approach to multiple-spin dynamics

2007

We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning an…

PhysicsUNIVERSALQuantum networkQuantum PhysicsQuantum dynamicsFOS: Physical sciencesQuantum channelMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterOpen quantum systemQUANTUM CLONINGQuantum processQuantum mechanicsSTATE TRANSFERStatistical physicsCHAINSQuantum informationQuantum cloningQuantum information scienceQuantum Physics (quant-ph)Mathematical PhysicsOther Condensed Matter (cond-mat.other)
researchProduct

Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

2014

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field…

Josephson effectDe factoAtomic systemPopulationFOS: Physical sciences-01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakequant-phlawQuantum mechanics0103 physical sciences:Science::Physics::Atomic physics::Quantum theory [DRNTU]010306 general physicseducationQuantumCondensed Matter::Quantum GasesPhysicsQuantum Physicseducation.field_of_studyCondensed Matter::OtherEstimation theoryAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)Optical cavitysymbolsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)cond-mat.quant-gasPhysical Review A
researchProduct

Probing mechanical quantum coherence with an ultracold-atom meter

2011

We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and it is thus suitable for a continuous detection of the cantilever'…

Angular momentumCantileverRadiation-pressureResonatorNanocantileverFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionSpinlawUltracold atomQuantum mechanics0103 physical sciencesMicromirrorOptical cavity010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsQuantum PhysicsBose-Einstein condensateCondensed Matter::OtherCavity quantum electrodynamicsBose Einstein Condensate Atomic physics quantum measurementOptomechanicsAtomic and Molecular Physics and OpticsComputer Science::OtherDynamicsQuantum Gases (cond-mat.quant-gas)Quantum Physics (quant-ph)Condensed Matter - Quantum GasesStateBose–Einstein condensateCoherence (physics)Physical Review A
researchProduct

Tensor-product states and local indistinguishability: an optical linear implementation

2000

In this paper we investigate the properties of distinguishability of an orthogonal set of product states of two three level particle system by a simple class of joint measures. Here we confine ourselves to a system of analysis built up of linear elements, such as beam splitters and phase shifters, delay lines, electronically switched linear devices and auxiliary photons. We present here the impossibility of realization of a perfect never falling analyzer with this tools.

Hilbert spaceQuantum entanglementTopologylaw.inventionQuantum nonlocalitysymbols.namesakeTensor productQuantum Information Entanglement Non-localitylawProduct (mathematics)Electronic engineeringsymbolsQuantum informationRealization (systems)Beam splitterMathematicsAIP Conference Proceedings
researchProduct

Entanglement control in hybrid optomechanical systems

2012

We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.

Condensed Matter::Quantum GasesPulsed laserPhysicsQuantum PhysicsMesoscopic physicsbusiness.industryFOS: Physical sciencesPhysics::OpticsQuantum entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionOpticsQuantum Gases (cond-mat.quant-gas)lawOptical cavityquantum control optomechanical systems cavity QEDOptoelectronicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesbusinessLaser lightPhysical Review A
researchProduct

Master equations for correlated quantum channels

2012

We derive the general form of a master equation describing the interaction of an arbitrary multipartite quantum system, consisting of a set of subsystems, with an environment, consisting of a large number of sub-envirobments. Each subsystem "collides" with the same sequence of sub-environments which, in between the collisions, evolve according to a map that mimics relaxations effects. No assumption is made on the specific nature of neither the system nor the environment. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Linblad super-operator contains pairwise term…

PhysicsQuantum PhysicsQuantum decoherenceStatistical Mechanics (cond-mat.stat-mech)Lindblad equationFOS: Physical sciencesGeneral Physics and AstronomyMathematical Physics (math-ph)Settore FIS/03 - Fisica Della MateriaClassical mechanicsQuantum processMaster equationLindblad superoperatorQuantum operationQuantum algorithmQuantum Physics (quant-ph)QuantumCondensed Matter - Statistical MechanicsMathematical Physicsopen quantum systems master equations quantum correlations
researchProduct

Extraction of Singlet States from Noninteracting High-Dimensional Spins

2008

We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented.

FABRY-PEROT-INTERFEROMETERPhysicsQuantum PhysicsSpinsScatteringSmall numberExtraction (chemistry)entanglement generation; quantum map; scatteringCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and AstronomyState (functional analysis)Quantum mechanicsSCATTERINGSinglet stateQuantum Physics (quant-ph)Quantum information scienceentanglement generationquantum mapQUANTUMENTANGLEMENT
researchProduct

Electron Fabry-Perot interferometer with two entangled magnetic impurities

2007

We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively…

Statistics and ProbabilityQUANTUM WIRESQuantum decoherenceSpin statesFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciences010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSCATTERINGSinglet state010306 general physicsMathematical PhysicsPhysicsCoupling constantINTERFERENCEQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringStatistical and Nonlinear Physics3. Good healthModeling and SimulationCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Electron scatteringStationary state
researchProduct

Quantum state transfer in imperfect artificial spin networks

2005

High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbors coupling is no more valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how pre-engineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.

PhysicsQuantum opticsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesQuantum numberAtomic and Molecular Physics and OpticsQubitQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin networkQuantum information scienceSuperconducting quantum computingQuantum Physics (quant-ph)Quantum computerSpin-½
researchProduct

Photon localization versus population trapping in a coupled-cavity array

2014

We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.

Physicseducation.field_of_studyQuantum Physicscavity array quantum transport open quantum systems cavity QEDPhotonQuantum decoherenceField (physics)PopulationFOS: Physical sciencesTrappingAtomic and Molecular Physics and OpticsAtomBound stateAtomic physicseducationQuantum Physics (quant-ph)Excitation
researchProduct

Superadiabatic dynamics in open quantum systems

2013

We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Geometric phase kickback in a mesoscopic qubit-oscillator system

2011

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro and nano-mechanical devices coupled to an effective two-level system.

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics
researchProduct