0000000000454654

AUTHOR

Mikko Salo

Inverse problems Research Group

Inverse problems research concentrates on the mathematical theory and practical implementation of indirect measurements. Applications are found in numerous research fields involving scientific, medical or industrial imaging; familiar examples include X-ray computed tomography and ultrasound imaging. Inverse problems have a rich mathematical theory employing modern methods in partial differential equations, harmonic analysis, and differential geometry.

research group

Free boundary methods and non-scattering phenomena

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

research product

Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities

We consider increasing stability in the inverse Schr\"{o}dinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential function, are proposed and their performance on the inverse Schr\"{o}dinger potential problem is investigated. It can be observed that higher order linearization for small boundary data can provide an increasing stability for an arbitrary power type nonlinearity term if the wavenumber is chosen large. Meanwhile, linearization with respect to the potential function leads to increasing stability for a quadratic nonlinearity term, which highlights the advantage of nonlinearit…

research product

Partial data inverse problems for Maxwell equations via Carleman estimates

In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-Uhlmann and Kenig-Sj\"ostrand-Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.

research product

p-harmonic coordinates for H\"older metrics and applications

We show that on any Riemannian manifold with H\"older continuous metric tensor, there exists a $p$-harmonic coordinate system near any point. When $p = n$ this leads to a useful gauge condition for regularity results in conformal geometry. As applications, we show that any conformal mapping between manifolds having $C^\alpha$ metric tensors is $C^{1+\alpha}$ regular, and that a manifold with $W^{1,n} \cap C^\alpha$ metric tensor and with vanishing Weyl tensor is locally conformally flat if $n \geq 4$. The results extend the works [LS14, LS15] from the case of $C^{1+\alpha}$ metrics to the H\"older continuous case. In an appendix, we also develop some regularity results for overdetermined el…

research product

Resolvent estimates for the magnetic Schrödinger operator in dimensions ≥2

It is well known that the resolvent of the free Schrödinger operator on weighted L2 spaces has norm decaying like λ−12 at energy λ . There are several works proving analogous high frequency estimates for magnetic Schrödinger operators, with large long or short range potentials, in dimensions n≥3 . We prove that the same estimates remain valid in all dimensions n≥2 . peerReviewed

research product

The Poisson embedding approach to the Calderón problem

We introduce a new approach to the anisotropic Calder\'on problem, based on a map called Poisson embedding that identifies the points of a Riemannian manifold with distributions on its boundary. We give a new uniqueness result for a large class of Calder\'on type inverse problems for quasilinear equations in the real analytic case. The approach also leads to a new proof of the result by Lassas and Uhlmann (2001) solving the Calder\'on problem on real analytic Riemannian manifolds. The proof uses the Poisson embedding to determine the harmonic functions in the manifold up to a harmonic morphism. The method also involves various Runge approximation results for linear elliptic equations.

research product

Partial data inverse problems for the Hodge Laplacian

We prove uniqueness results for a Calderon type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderon type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar resu…

research product

Inverse problems for elliptic equations with fractional power type nonlinearities

We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. By using a fractional order adaptation of this method, we show that the results of [LLLS20a, LLLS20b] remain valid for general power type nonlinearities.

research product

On Lp resolvent estimates for Laplace–Beltrami operators on compact manifolds

In this article we prove Lp estimates for resolvents of Laplace–Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation was to obtain Lp Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of Lp resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the constructi…

research product

Recent progress in the Calderón problem with partial data

research product

Geometric Inverse Problems

This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderón problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruc…

research product

p-harmonic coordinates for Hölder metrics and applications

We show that on any Riemannian manifold with H¨older continuous metric tensor, there exists a p-harmonic coordinate system near any point. When p = n this leads to a useful gauge condition for regularity results in conformal geometry. As applications, we show that any conformal mapping between manifolds having C α metric tensors is C 1+α regular, and that a manifold with W1,n ∩ C α metric tensor and with vanishing Weyl tensor is locally conformally flat if n ≥ 4. The results extend the works [LS14, LS15] from the case of C 1+α metrics to the H¨older continuous case. In an appendix, we also develop some regularity results for overdetermined elliptic systems in divergence form. peerReviewed

research product

Enclosure method for the p-Laplace equation

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

research product

Resolvent estimates for the magnetic Schrödinger operator in dimensions $$\ge 2$$

It is well known that the resolvent of the free Schr\"odinger operator on weighted $L^2$ spaces has norm decaying like $\lambda^{-\frac{1}{2}}$ at energy $\lambda$. There are several works proving analogous high-frequency estimates for magnetic Schr\"odinger operators, with large long or short range potentials, in dimensions $n \geq 3$. We prove that the same estimates remain valid in all dimensions $n \geq 2$.

research product

The Calderón problem for the fractional Schrödinger equation

We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.

research product

The fractional Calderón problem: Low regularity and stability

The Calder\'on problem for the fractional Schr\"odinger equation was introduced in the work \cite{GSU}, which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant $L^p$ or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argumen…

research product

Limiting Carleman weights and conformally transversally anisotropic manifolds

We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, 3 3 -manifolds, and 4 4 -manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman weights, and show that there are only three basic such weights up to the action of the conformal group. In dimension three we show that if the manifold is not conformally flat, there could be one or two limiting Carleman weights. We also characterize the metrics that have more than one limiting Carleman weight. In dimension four we obtain a complete spectrum of examples according to the structure of the Weyl tensor. In particular, we construct unimodular Lie groups whose …

research product

Exponential instability in the fractional Calder\'on problem

In this note we prove the exponential instability of the fractional Calder\'on problem and thus prove the optimality of the logarithmic stability estimate from \cite{RS17}. In order to infer this result, we follow the strategy introduced by Mandache in \cite{M01} for the standard Calder\'on problem. Here we exploit a close relation between the fractional Calder\'on problem and the classical Poisson operator. Moreover, using the construction of a suitable orthonormal basis, we also prove (almost) optimality of the Runge approximation result for the fractional Laplacian, which was derived in \cite{RS17}. Finally, in one dimension, we show a close relation between the fractional Calder\'on pro…

research product

Jacobian of solutions to the conductivity equation in limited view

Abstract The aim of hybrid inverse problems such as Acousto-Electric Tomography or Current Density Imaging is the reconstruction of the electrical conductivity in a domain that can only be accessed from its exterior. In the inversion procedure, the solutions to the conductivity equation play a central role. In particular, it is important that the Jacobian of the solutions is non-vanishing. In the present paper we address a two-dimensional limited view setting, where only a part of the boundary of the domain can be controlled by a non-zero Dirichlet condition, while on the remaining boundary there is a zero Dirichlet condition. For this setting, we propose sufficient conditions on the bounda…

research product

The geodesic X-ray transform with matrix weights

Consider a compact Riemannian manifold of dimension $\geq 3$ with strictly convex boundary, such that the manifold admits a strictly convex function. We show that the attenuated ray transform in the presence of an arbitrary connection and Higgs field is injective modulo the natural obstruction for functions and one-forms. We also show that the connection and the Higgs field are uniquely determined by the scattering relation modulo gauge transformations. The proofs involve a reduction to a local result showing that the geodesic X-ray transform with a matrix weight can be inverted locally near a point of strict convexity at the boundary, and a detailed analysis of layer stripping arguments ba…

research product

Uniqueness and reconstruction for the fractional Calder\'on problem with a single measurement

We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.

research product

Quantitative Approximation Properties for the Fractional Heat Equation

In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss genera…

research product

Inverse problems for real principal type operators

We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.

research product

The Calderon problem in transversally anisotropic geometries

We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…

research product

Quantitative Runge Approximation and Inverse Problems

In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provide a new proof of the result from \cite{F07}, \cite{AK12} on stability for the Calder\'on problem with local data.

research product

On the scientific work of Victor Isakov

research product

Inverse problems in imaging and engineering science

research product

Strictly convex corners scatter

We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than $\pi$. This extends the earlier result of Bl{\aa}sten, P\"aiv\"arinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of $(0,\pi)$.

research product

Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds

In this article we study the linearized anisotropic Calderon problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calderon problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the tra…

research product

Local Gauge Conditions for Ellipticity in Conformal Geometry

In this article we introduce local gauge conditions under which many curvature tensors appearing in conformal geometry, such as the Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors, become elliptic operators. The gauge conditions amount to fixing an $n$-harmonic coordinate system and normalizing the determinant of the metric. We also give corresponding elliptic regularity results and characterizations of local conformal flatness in low regularity settings.

research product

A minimization problem with free boundary and its application to inverse scattering problems

We study a minimization problem with free boundary, resulting in hybrid quadrature domains for the Helmholtz equation, as well as some application to inverse scattering problem.

research product

The Calderón problem with partial data on manifolds and applications

We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…

research product

Inverse problems and invisibility cloaking for FEM models and resistor networks

In this paper we consider inverse problems for resistor networks and for models obtained via the finite element method (FEM) for the conductivity equation. These correspond to discrete versions of the inverse conductivity problem of Calderón. We characterize FEM models corresponding to a given triangulation of the domain that are equivalent to certain resistor networks, and apply the results to study nonuniqueness of the discrete inverse problem. It turns out that the degree of nonuniqueness for the discrete problem is larger than the one for the partial differential equation. We also study invisibility cloaking for FEM models, and show how an arbitrary body can be surrounded with a layer …

research product

Stability of the Calderón problem in admissible geometries

In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderon problem. peerReviewed

research product

On instability mechanisms for inverse problems

In this article we present three robust instability mechanisms for linear and nonlinear inverse problems. All of these are based on strong compression properties (in the sense of singular value or entropy number bounds) which we deduce through either strong global smoothing, only weak global smoothing or microlocal smoothing for the corresponding forward operators, respectively. As applications we for instance present new instability arguments for unique continuation, for the backward heat equation and for linear and nonlinear Calder\'on type problems in general geometries, possibly in the presence of rough coefficients. Our instability mechanisms could also be of interest in the context of…

research product

Quadrature domains for the Helmholtz equation with applications to non-scattering phenomena

In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.

research product

On the range of the attenuated ray transform for unitary connections

We describe the range of the attenuated ray transform of a unitary connection on a simple surface acting on functions and 1-forms. We use this to determine the range of the ray transform acting on symmetric tensor fields.

research product

Inverse problems for semilinear elliptic PDE with measurements at a single point

We consider the inverse problem of determining a potential in a semilinear elliptic equation from the knowledge of the Dirichlet-to-Neumann map. For bounded Euclidean domains we prove that the potential is uniquely determined by the Dirichlet-to-Neumann map measured at a single boundary point, or integrated against a fixed measure. This result is valid even when the Dirichlet data is only given on a small subset of the boundary. We also give related uniqueness results on Riemannian manifolds.

research product

Matematiikalla miljonääriksi?

research product

$n$-harmonic coordinates and the regularity of conformal mappings

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.

research product

The linearized Calderón problem on complex manifolds

International audience; In this note we show that on any compact subdomain of a Kähler manifold that admits sufficiently many global holomorphic functions , the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calderón problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of Kähler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calderón problem in higher dimensions. The argument is based on constructing Morse holo-morphic functions with approximately prescribed critical points.…

research product

The Linearized Calderón Problem in Transversally Anisotropic Geometries

In this article we study the linearized anisotropic Calderon problem. In a compact manifold with boundary, this problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold is transversally anisotropic, we show that the boundary measurements determine an FBI type transform at certain points in the transversal manifold. This leads to recovery of transversal singularities in the linearized problem. The method requires a geometric condition on the transversal manifold related to pairs of intersecting geodesics, but it does not involve the geodesic X-ray transform which has limited earlier results on this problem.

research product

Kompaktisuus ja kompaktisointi

Tässä tutkielmassa käsitellään topologisia avaruuksia ja erityisesti niiden kompaktisuutta. Topologiset avaruudet ovat yleistys normiavaruuksista, mutta niissä ei tunneta etäisyyden käsitettä. Topologisia käsitteitä ovatkin sellaiset, jotka säilyvät avaruuden jatkuvissa muodonmuutoksissa, kuten venytyksissä ja taivutuksissa. Topologian näkökulmasta esimerkiksi väli $(0,1)$ on sama kuin koko reaaliakseli $\mathbb{R}$. Kompaktisuus on yksi tärkeimpiä topologisia ominaisuuksia ja tutkielmassa todistetaankin useita kompaktisuuteen liittyviä tuloksia, joista tärkein on ehdottomasti Tihonovin lause. Tihonovin lauseen sovelluksena todistamme myös Heine-Borelin lauseen, joka karakterisoi euklidisen…

research product

Applications of Microlocal Analysis in Inverse Problems

This note reviews certain classical applications of microlocal analysis in inverse problems. The text is based on lecture notes for a postgraduate level minicourse on applications of microlocal analysis in inverse problems, given in Helsinki and Shanghai in June 2019.

research product

Invariant distributions, Beurling transforms and tensor tomography in higher dimensions

In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…

research product

Linearized Calder\'on problem and exponentially accurate quasimodes for analytic manifolds

In this article we study the linearized anisotropic Calder\'on problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the manifold is transversally anisotropic and that the transversal manifold is real analytic and satisfies a geometric condition related to the geometry of pairs of intersecting geodesics. In this case, we solve the linearized anisotropic Calder\'on problem. The geometric condition does not involve the injectivity of the geodesic X-ray transform. Crucial ingredients in the proof of our result are the construction of Gaussian beam quasimodes on the…

research product

Tensor tomography on Cartan–Hadamard manifolds

We study the geodesic X-ray transform on Cartan-Hadamard manifolds, and prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016) to dimensions $n \geq 3$ and to the case of tensor fields of any order.

research product

The Calder\'on problem for the conformal Laplacian

We consider a conformally invariant version of the Calder\'on problem, where the objective is to determine the conformal class of a Riemannian manifold with boundary from the Dirichlet-to-Neumann map for the conformal Laplacian. The main result states that a locally conformally real-analytic manifold in dimensions $\geq 3$ can be determined in this way, giving a positive answer to an earlier conjecture by Lassas and Uhlmann (2001). The proof proceeds as in the standard Calder\'on problem on a real-analytic Riemannian manifold, but new features appear due to the conformal structure. In particular, we introduce a new coordinate system that replaces harmonic coordinates when determining the co…

research product

Spectral rigidity and invariant distributions on Anosov surfaces

This article considers inverse problems on closed Riemannian surfaces whose geodesic flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity results are of independent interest and imply the existence of many geometric invariant distributions on the unit sphere bundle. In particular, we show that on any Anosov surface $(M,g)$, given a smooth function $f$ on $M$ there is a distribution in the Sobolev space $H^{-1}(SM)$ that is invariant under the geodesic flow and whose projection to $M$ i…

research product

The Calderón problem for the conformal Laplacian

We consider a conformally invariant version of the Calderón problem, where the objective is to determine the conformal class of a Riemannian manifold with boundary from the Dirichlet-to-Neumann map for the conformal Laplacian. The main result states that a locally conformally real-analytic manifold in dimensions can be determined in this way, giving a positive answer to an earlier conjecture [LU02, Conjecture 6.3]. The proof proceeds as in the standard Calderón problem on a real-analytic Riemannian manifold, but new features appear due to the conformal structure. In particular, we introduce a new coordinate system that replaces harmonic coordinates when determining the conformal class in a …

research product

The linearized Calderón problem for polyharmonic operators

In this article we consider a linearized Calderón problem for polyharmonic operators of order 2m (m ≥ 2) in the spirit of Calderón’s original work [7]. We give a uniqueness result for determining coefficients of order ≤ 2m − 1 up to gauge, based on inverting momentum ray transforms. peerReviewed

research product

Inverse problems for $p$-Laplace type equations under monotonicity assumptions

We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.

research product

Tensor tomography on surfaces

We show that on simple surfaces the geodesic ray transform acting on solenoidal symmetric tensor fields of arbitrary order is injective. This solves a long standing inverse problem in the two-dimensional case. peerReviewed

research product

Geodesic X-ray tomography for piecewise constant functions on nontrapping manifolds

We show that on a two-dimensional compact nontrapping manifold with strictly convex boundary, a piecewise constant function is determined by its integrals over geodesics. In higher dimensions, we obtain a similar result if the manifold satisfies a foliation condition. These theorems are based on iterating a local uniqueness result. Our proofs are elementary.

research product

Tensor tomography: Progress and challenges

We survey recent progress in the problem of recovering a tensor field from its integrals along geodesics. We also propose several open problems.

research product

The linearized Calder\'on problem on complex manifolds

In this note we show that on any compact subdomain of a K\"ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calder\'on problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of K\"ahler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot by treated by standard methods for the Calder\'on problem in higher dimensions. The argument is based on constructing Morse holomorphic functions with approximately prescribed critical points. This extends resu…

research product

Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations

We study various partial data inverse boundary value problems for the semilinear elliptic equation $\Delta u+ a(x,u)=0$ in a domain in $\mathbb R^n$ by using the higher order linearization technique introduced in [LLS 19, FO19]. We show that the Dirichlet-to-Neumann map of the above equation determines the Taylor series of $a(x,z)$ at $z=0$ under general assumptions on $a(x,z)$. The determination of the Taylor series can be done in parallel with the detection of an unknown cavity inside the domain or an unknown part of the boundary of the domain. The method relies on the solution of the linearized partial data Calder\'on problem [FKSU09], and implies the solution of partial data problems fo…

research product

On $L^p$ resolvent estimates for Laplace-Beltrami operators on compact manifolds

Abstract. In this article we prove Lp estimates for resolvents of Laplace–Beltrami operators on compact Riemannian manifolds, generalizing results of Kenig, Ruiz and Sogge (1987) in the Euclidean case and Shen (2001) for the torus. We follow Sogge (1988) and construct Hadamard's parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation was to obtain Lp Carleman estimates with limiting Carleman weights generalizing those of Jerison and Kenig (1985); we illustrate the pertinence of Lp resolvent estimates by showing the relation with Carleman estimates. Such estimates are useful in the …

research product

Rungen lause ja sovelluksia inversio-ongelmiin

research product

The non-Abelian X-ray transform on surfaces

This paper settles the question of injectivity of the non-Abelian X-ray transform on simple surfaces for the general linear group of invertible complex matrices. The main idea is to use a factorization theorem for Loop Groups to reduce to the setting of the unitary group, where energy methods and scalar holomorphic integrating factors can be used. We also show that our main theorem extends to cover the case of an arbitrary Lie group.

research product

Shape identification in inverse medium scattering problems with a single far-field pattern

Consider time-harmonic acoustic scattering from a bounded penetrable obstacle $D\subset {\mathbb R}^N$ embedded in a homogeneous background medium. The index of refraction characterizing the material inside $D$ is supposed to be Holder continuous near the corners. If $D\subset {\mathbb R}^2$ is a convex polygon, we prove that its shape and location can be uniquely determined by the far-field pattern incited by a single incident wave at a fixed frequency. In dimensions $N \geq 3$, the uniqueness applies to penetrable scatterers of rectangular type with additional assumptions on the smoothness of the contrast. Our arguments are motivated by recent studies on the absence of nonscattering waven…

research product

Broken ray transform on a Riemann surface with a convex obstacle

We consider the broken ray transform on Riemann surfaces in the presence of an obstacle, following earlier work of Mukhometov. If the surface has nonpositive curvature and the obstacle is strictly convex, we show that a function is determined by its integrals over broken geodesic rays that reflect on the boundary of the obstacle. Our proof is based on a Pestov identity with boundary terms, and it involves Jacobi fields on broken rays. We also discuss applications of the broken ray transform.

research product

Determining an unbounded potential from Cauchy data in admissible geometries

In [4 Dos Santos Ferreira , D. , Kenig , C.E. , Salo , M. , Uhlmann , G. ( 2009 ). Limiting Carleman weights and anisotropic inverse problems . Invent. Math. 178 : 119 – 171 . [Crossref], [Web of Science ®], [Google Scholar] ] anisotropic inverse problems were considered in certain admissible geometries, that is, on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. In particular, it was proved that a bounded smooth potential in a Schrödinger equation was uniquely determined by the Dirichlet-to-Neumann map in dimensions n ≥ 3. In this article we extend this result to the case of unbounded potentials, namely tho…

research product

The fixed angle scattering problem and wave equation inverse problems with two measurements

We consider two formally determined inverse problems for the wave equation in more than one space dimension. Motivated by the fixed angle inverse scattering problem, we show that a compactly supported potential is uniquely determined by the far field pattern generated by plane waves coming from exactly two opposite directions. This implies that a reflection symmetric potential is uniquely determined by its fixed angle scattering data. We also prove a Lipschitz stability estimate for an associated problem. Motivated by the point source inverse problem in geophysics, we show that a compactly supported potential is uniquely determined from boundary measurements of the waves generated by exactl…

research product

Preface

research product

Carleman estimates for geodesic X-ray transforms

In this article we introduce an approach for studying the geodesic X-ray transform and related geometric inverse problems by using Carleman estimates. The main result states that on compact negatively curved manifolds (resp. nonpositively curved simple or Anosov manifolds), the geodesic vector field satisfies a Carleman estimate with logarithmic weights (resp. linear weights) on the frequency side. As a particular consequence, on negatively curved simple manifolds the geodesic X-ray transform with attenuation given by a general connection and Higgs field is invertible modulo natural obstructions. The proof is based on showing that the Pestov energy identity for the geodesic vector field com…

research product

Dimension bounds in monotonicity methods for the Helmholtz equation

The article [B. Harrach, V. Pohjola, and M. Salo, Anal. PDE] established a monotonicity inequality for the Helmholtz equation and presented applications to shape detection and local uniqueness in inverse boundary problems. The monotonicity inequality states that if two scattering coefficients satisfy $q_1 \leq q_2$, then the corresponding Neumann-to-Dirichlet operators satisfy $\Lambda(q_1) \leq \Lambda(q_2)$ up to a finite-dimensional subspace. Here we improve the bounds for the dimension of this space. In particular, if $q_1$ and $q_2$ have the same number of positive Neumann eigenvalues, then the finite-dimensional space is trivial. peerReviewed

research product

Monotonicity and local uniqueness for the Helmholtz equation

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…

research product

Automatic dynamic texture segmentation using local descriptors and optical flow

A dynamic texture (DT) is an extension of the texture to the temporal domain. How to segment a DT is a challenging problem. In this paper, we address the problem of segmenting a DT into disjoint regions. A DT might be different from its spatial mode (i.e., appearance) and/or temporal mode (i.e., motion field). To this end, we develop a framework based on the appearance and motion modes. For the appearance mode, we use a new local spatial texture descriptor to describe the spatial mode of the DT; for the motion mode, we use the optical flow and the local temporal texture descriptor to represent the temporal variations of the DT. In addition, for the optical flow, we use the histogram of orie…

research product

The X-Ray Transform for Connections in Negative Curvature

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

research product

The fixed angle scattering problem with a first order perturbation

We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measurements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.

research product

Fixed angle inverse scattering in the presence of a Riemannian metric

We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.

research product

The fractional Calder\'on problem

We review recent progress in the fractional Calder\'on problem, where one tries to determine an unknown coefficient in a fractional Schr\"odinger equation from exterior measurements of solutions. This equation enjoys remarkable uniqueness and approximation properties, which turn out to yield strong results in related inverse problems.

research product

The Calder\'on problem and normal forms

We outline an approach to the inverse problem of Calder\'on that highlights the role of microlocal normal forms and propagation of singularities and extends a number of earlier results also in the anisotropic case. The main result states that from the boundary measurements it is possible to recover integrals of the unknown coefficient over certain two-dimensional manifolds called good bicharacteristic leaves. This reduces the Calder\'on problem into solving a linear integral geometry problem (inversion of a bicharacteristic leaf transform).

research product

Historiaa lukkojen takana : avaimia pakohuoneiden käyttöön historian opetuksessa

Historian tutkijan työtä verrataan usein salapoliisin työhön. Rajallisista johtolangoista on pyrittävä luomaan uskottava tulkinta sille, mitä tapahtui ja miksi. Tällaisia elämyksiä tarjoavat usein myös suositut pakohuoneet, joissa huoneessa olevien vihjeiden avulla on löydettävä koodeja, jotta lukko saadaan auki ja päästään lähemmäs ratkaisua. Kun nämä kolme asiaa laitetaan yhteen syntyy tutkivaa historian oppimista salapoliisityön tapaan.

research product

A sharp stability estimate for tensor tomography in non-positive curvature

Funder: University of Cambridge

research product

Fixed Angle Inverse Scattering for Almost Symmetric or Controlled Perturbations

We consider the fixed angle inverse scattering problem and show that a compactly supported potential is uniquely determined by its scattering amplitude for two opposite fixed angles. We also show that almost symmetric or horizontally controlled potentials are uniquely determined by their fixed angle scattering data. This is done by establishing an equivalence between the frequency domain and the time domain formulations of the problem, and by solving the time domain problem by extending the methods of [RS19] which adapts the ideas introduced in [BK81] and [IY01] on the use of Carleman estimates for inverse problems.

research product

Inverse problems for elliptic equations with power type nonlinearities

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

research product

Monotonicity and enclosure methods for the p-Laplace equation

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

research product

Fixed angle inverse scattering for sound speeds close to constant

We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one measurement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.

research product

Free boundary methods and non-scattering phenomena

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

research product