0000000000460026

AUTHOR

Francesca Monteleone

showing 33 related works from this author

Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous Leukemia cell growth

2017

Despite Imatinib (IM), a selective inhibitor of Bcr-Abl, having led to improved prognosis in Chronic Myeloid Leukemia (CML) patients, acquired resistance and long-term adverse effects is still being encountered. There is, therefore, urgent need to develop alternative strategies to overcome drug resistance. According to the molecules expressed on their surface, exosomes can target specific cells. Exosomes can also be loaded with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. In this study, we engineered HEK293T cells to express the exosomal protein Lamp2b, fused to a fragment of Interleukin 3 (IL3). The IL3 receptor (IL3-R) is overexpressed in CML…

0301 basic medicineMedicine (miscellaneous)PharmacologyEngineered exosomeExosomesInterleukin 3Antineoplastic AgentMiceHEK293 Cellhemic and lymphatic diseasesDrug CarrierPharmacology Toxicology and Pharmaceutics (miscellaneous)Drug CarriersChronic myeloid leukemiaMyeloid leukemiaChronic myeloid leukemia; Drug delivery; Drug resistance; Engineered exosomes; Interleukin 3; Animals; Antineoplastic Agents; Cell Line Tumor; Cell Proliferation; Disease Models Animal; Drug Carriers; Exosomes; HEK293 Cells; Heterografts; Humans; Imatinib Mesylate; Leukemia Myelogenous Chronic BCR-ABL Positive; Mice; Receptors Interleukin-3; Treatment Outcome3. Good healthTreatment OutcomeImatinib MesylateHeterograftsHeterograftResearch Papermedicine.drugHumanEngineered exosomesAntineoplastic Agents03 medical and health sciencesIn vivoCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositivemedicineAnimalsHumansneoplasmsInterleukin 3.Interleukin 3Cell Proliferationbusiness.industryAnimalImatinibmedicine.diseaseMicrovesiclesReceptors Interleukin-3ExosomeDisease Models AnimalHEK293 Cells030104 developmental biologyImatinib mesylateDrug resistanceCancer cellDrug deliverybusinessChronic myelogenous leukemia
researchProduct

Osteogenic commitment and differentiation of human mesenchymal stem cells by low‐intensity pulsed ultrasound stimulation

2018

Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm(2) LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7d, 14d, 21d). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific network…

Proteomics0301 basic medicineTime FactorsUltrasonic WaveTranscription FactorPhysiologyCellular differentiationClinical BiochemistryLow-intensity pulsed ultrasoundOsteogenesisProtein Interaction MapsStem Cell Nichemesenchymal stem cellCells CulturedProtein metabolic processproteomic analysiMesenchymal Stromal CellReverse Transcriptase Polymerase Chain ReactionOsteogenesiIntracellular Signaling Peptides and ProteinsCell DifferentiationOsteoblastproteomic analysisFlow CytometryCell biologyRUNX2Phenotypemedicine.anatomical_structureUltrasonic Wavesosteoblast differentiationosteogenic commitmentProtein Interaction MapHumanSignal TransductionHomeobox protein NANOGlow-intensity pulsed ultrasoundTime FactorCell SurvivalEnzyme-Linked Immunosorbent AssayBiology03 medical and health sciencesSOX2medicineHumansCell LineageMesenchymal stem cellProteomicMesenchymal Stem CellsCell Biology030104 developmental biologyGene Expression RegulationIntracellular Signaling Peptides and ProteinImmunologyTranscription FactorsJournal of Cellular Physiology
researchProduct

SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affecting the activity of m…

2018

Background Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by expression of the chimeric BCR-ABL tyrosine kinase oncogene, resulting from the t(9;22) chromosomal translocation. Imatinib (gleevec, STI-571) is a selective inhibitor of BCR-ABL activity highly effective in the treatment of CML. However, even though almost all CML patients respond to treatment with imatinib or third generation inhibitors, these drugs are not curative and need to be taken indefinitely or until patients become resistant. Therefore, to get a definitive eradication of leukemic cells, it is necessary to find novel therapeutic combinations, for achieving greater efficacy and fewer side effec…

0301 basic medicineProteomicsCancer ResearchCurcuminCML cellsCellReceptors Cytoplasmic and NuclearKaryopherinsTransfectionlcsh:RC254-282Mass SpectrometrymiR-22/IPO7/HIF-1α axis03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemiR-22/IPO7/HIF-1α axiSettore BIO/13 - Biologia Applicatahemic and lymphatic diseasesCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositivemedicineHumansCML cells; Curcumin; miR-22/IPO7/HIF-1α axis; SWATH-MS; Oncology; Cancer ResearchOncogeneChemistryResearchCML cellImatinibTransfectionmedicine.diseaseHypoxia-Inducible Factor 1 alpha Subunitlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthMicroRNAs030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchCurcuminSWATH-MSK562 CellsTyrosine kinaseK562 cellsChronic myelogenous leukemiamedicine.drug
researchProduct

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

2020

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

0301 basic medicineCancer ResearchCell signalingXBP1Cellular differentiationlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataTranscription factorChemistryEndoplasmic reticulumextracellular-vesiclesExtracellular vesiclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCell biologymultiple myelomaUPR-related molecules030104 developmental biologyosteoclastsOncology030220 oncology & carcinogenesisUnfolded protein responsePhosphorylationbone diseaseCancers
researchProduct

Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative

2017

The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the iden…

Proteomics0301 basic medicineProteomeStandardizationComputational biologyBiologyMitochondrionProteomicsBioinformaticsBiochemistryenrichment protocol; mitochondria; Mitochondrial Human Proteome Project; standardization;Cell LineMitochondrial Proteins03 medical and health sciences0302 clinical medicineTandem Mass SpectrometryHuman proteome projectHumansProtein Interaction MapsSettore BIO/10 - BIOCHIMICAMitochondrial proteinstandardizationChromatographyLiquidNeXtProtChemistry (all)General Chemistrymitochondria030104 developmental biologyItalyenrichment protocolProteomeReference databaseMitochondrial Human Proteome Projectenrichment protocol; mitochondria; Mitochondrial Human Proteome Project; standardization; Cell Line; Chromatography Liquid; Humans; Italy; Mitochondria; Mitochondrial Proteins; Protein Interaction Maps; Proteome; Proteomics; Tandem Mass Spectrometry; Biochemistry; Chemistry (all)030217 neurology & neurosurgeryChromatography Liquid
researchProduct

Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role …

2017

AbstractThe goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are signific…

Proteomics0301 basic medicineRHOAEndotheliummetastatic cancer cellScienceCell PlasticityContext (language use)ExosomesArticlePermeability03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataCell Line Tumormetastatic cancer cells; Exosomes; tumor heterogeneitytumor heterogeneityHuman Umbilical Vein Endothelial CellsmedicineHumansEndotheliumrho-Associated KinasesMultidisciplinarybiologyQThrombinRPhenotypeMicrovesicles3. Good healthCell biologyEndothelial stem cellExosomePhenotype030104 developmental biologymedicine.anatomical_structureTumor progression030220 oncology & carcinogenesisColonic NeoplasmsCancer cellbiology.proteinMedicinerhoA GTP-Binding ProteinSignal Transduction
researchProduct

Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death

2015

// Stefania Raimondo 1 , Flores Naselli 1 , Simona Fontana 1 , Francesca Monteleone 1 , Alessia Lo Dico 1 , Laura Saieva 1 , Giovanni Zito 2 , Anna Flugy 1 , Mauro Manno 3 , Maria Antonietta Di Bella 1 , Giacomo De Leo 1 , Riccardo Alessandro 1 1 Dipartimento di Biopatologia e Biotecnologie Mediche, Universita degli Studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy 2 Laboratorio di Ingegneria Tissutale – Piattaforme Innovative per l’Ingegneria Tissutale (PON01–00829), Istituto Ortopedico Rizzoli, Palermo, Italy 3 Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Palermo, Italy Correspondence to: Riccardo Alessandro, e-mail: riccardo.alessandro@unipa.it Keywords: canc…

MaleProteomicsCitrusCell signalingProgrammed cell deathTime Factorsexosome-like nanovesiclesCell SurvivalCellApoptosisMice SCIDBiologyExosomesTNF-Related Apoptosis-Inducing LigandCitrus limon L.; TRAIL-mediated cell death; cancer; exosome-like nanovesiclesCitrus limon L.Mice Inbred NODCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositiveHuman Umbilical Vein Endothelial CellsmedicinecancerAnimalsHumansCell ProliferationPlant ProteinsPlants MedicinalPlant ExtractsCell growthCancermedicine.diseaseTRAIL-mediated cell deathAntineoplastic Agents PhytogenicXenograft Model Antitumor AssaysMicrovesiclesTumor BurdenFruit and Vegetable Juicesmedicine.anatomical_structureOncologyApoptosisImmunologyCancer researchNanoparticlesSignal transductionResearch PaperPhytotherapySignal Transduction
researchProduct

The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Background Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. Methods DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional…

0301 basic medicineCancer ResearchColorectal cancerApoptosisMiceSettore BIO/13 - Biologia ApplicataGene Regulatory NetworksMolecular Targeted TherapyCitrus-limon nanovesicleTransfectionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Oncology; Cancer ResearchOncologyPhospholipasesCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Animals; Antineoplastic Agents; Apoptosis; Cell Line Tumor; Cell Proliferation; Colorectal Neoplasms; Computational Biology; Disease Models Animal; Female; Gene Expression Profiling; Gene Ontology; Gene Regulatory Networks; Gene Silencing; Humans; MAP Kinase Signaling System; Mice; Phospholipases; Signal Transduction; Xenograft Model Antitumor Assays; Biomarkers Tumor; Molecular Targeted TherapyFemaleColorectal NeoplasmsSignal TransductionMAP Kinase Signaling SystemAntineoplastic Agentslcsh:RC254-282Citrus-limon nanovesicles03 medical and health sciencesDownregulation and upregulationIn vivoCell Line TumorBiomarkers TumormedicineAnimalsHumansGene silencingGene SilencingPhospholipase DDHD1Cell Proliferationbusiness.industryCell growthGene Expression ProfilingResearchComputational BiologyCancermedicine.diseaseXenograft Model Antitumor AssaysColorectal cancerDisease Models AnimalGene Ontology030104 developmental biologyApoptosisCancer researchbusiness
researchProduct

Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived…

2017

Abstract We have previously isolated exosome-like nanoparticles from Citrus-limon juice, able to inhibit in vitro and in vivo tumor cell growth. In order to deeply understand the mechanism underlying nanovesicle effects, we performed a proteomic profile of treated colorectal cancer cells. Among the proteins differentially expressed after nanovesicle treatment, we found a significant downregulation of the Acetyl-CoA Carboxylase 1 (ACACA) and we demonstrated that silencing ACACA in cancer cells leads to a reduction of cell growth. Our study proved that the anti-tumor effects of Citrus-limon nanovesicles is partly mediated by lipid metabolism inhibition, in particular via ACACA downregulation.…

Proteomics0301 basic medicineCitrusBiophysicsBiologyExosomesBiochemistry03 medical and health sciencesDownregulation and upregulationSettore BIO/13 - Biologia ApplicataCell Line TumorHumansGene silencingCell ProliferationLabel-free quantitative proteomic analysisACACAProteomic ProfileProteomic ProfilingCell growthCitrus-limon nanovesicleAcetyl-CoA carboxylaseLipid MetabolismColorectal cancer030104 developmental biologyBiochemistryColonic NeoplasmsCancer cellCancer researchAcetyl-CoA CarboxylaseJournal of Proteomics
researchProduct

PO-053 The phospholipase ddhd1 as a new target in colorectal cancer therapy

2018

Introduction We have recently demonstrated that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability and that this effect is associated with the down-regulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on DDHD1 contribution in neurological disorders, information on its involvement in cancer is missing. Here we investigate the role of DDHD1 in colon cancer. Material and methods DDHD1 siRNAs and overexpression vector were transfected into colorectal cancer and normal cells to down-regulate or up-regulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the fun…

Cancer ResearchSmall interfering RNAColorectal cancerCell growthCancerTransfectionBiologymedicine.diseaseOncologyCancer cellmedicineCancer researchGene silencingIntracellular
researchProduct

A novel community driven software for functional enrichment analysis of extracellular vesicles data

2017

Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested feat…

0301 basic medicineHistologyComputer scienceDownloadShort CommunicationCell- och molekylärbiologicomputer.software_genreExtracellular vesiclesArticleWorld Wide WebFunRich03 medical and health sciences0302 clinical medicineSoftwareRZSettore BIO/13 - Biologia ApplicataJournal ArticleMedicine and Health SciencesPlug-inlcsh:QH573-671Scientific disciplinesbusiness.industrylcsh:CytologySoftware developmentCell BiologybioinformaticsExtracellular vesiclesData scienceCANCERExtracellular vesicles; FunRich; bioinformaticsCell and molecular biology030104 developmental biology030220 oncology & carcinogenesisExtracellular vesicleAnalysis toolsbusinesscomputerCell and Molecular Biology
researchProduct

Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype, via exosomal miR-21

2016

Abstract: Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating …

0301 basic medicineProteomicsCurcuminProteomeAngiogenesisRHOBNeovascularization PhysiologicAntineoplastic AgentsexosomesExosome03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/13 - Biologia ApplicataCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositiveHuman Umbilical Vein Endothelial CellsMedicineHumansInterleukin 8MARCKSMyristoylated Alanine-Rich C Kinase SubstrateCMLBiologyCells CulturedNeovascularization Pathologicbusiness.industryexosomes curcumin miR-21 CMLMicrovesiclesCell biologyMicroRNAs030104 developmental biologyOncologychemistryGene Expression RegulationSettore CHIM/09 - Farmaceutico Tecnologico Applicativo030220 oncology & carcinogenesisImmunologyCurcuminmiR-21Human medicinebusinessK562 CellsK562 cellsResearch PaperOncotarget
researchProduct

Additional file 10: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affe…

2018

Figure S5. Representative western blots and corresponding densitograms showing that in K562 (a) and LAMA84 cells (b) curcumin decreased nuclear levels of HIF-1α. Ponceau S of nuclear extract was used as loading control. Intensities of proteins band (in Ponceau S the band used is indicated with arrow) were calculated from the peak area of densitogram by using Image J software. Ctrl: control cells. (PPTX 809 kb)

researchProduct

Additional file 11: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affe…

2018

Figure S6. IPO7/miRNAs correlation. a Analysis performed by using microRNA target prediction software miRSearch V3.0 showed that IPO7 is a validated target of miR-22 and miR-9. b Analysis of predicted multiple targets performed by MicroRNA Target prediction (miRTar) tool ( http://mirtar.mbc.nctu.edu.tw/human/ ) revealed within the CurcuDown-Regulated dataset the presence of several of miR-22 targets beside IPO7. No target of miR-9 was found. (PPTX 179 kb)

researchProduct

Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype, via exosomal miR-21.

2016

.

Exosomes curcumin chronic myelogenous leukemia angiogenesis
researchProduct

Proteomic profiling and functional characterization of metastatic colon cancer exosomes spreading malignant properties in tumor microenvironment

2016

Human tumors display a remarkable intratumor heterogeneity affecting clinically relevant phenotypes such as ability to metastasize or to tolerate cytotoxic drugs. Recent published data indicate that tumor derived exosomes (TDEs) can have a pivotal role in regulating tumor heterogeneity by transferring functional biomolecules between various populations of tumor cells and between tumor cells and nontumor cells with consequences for whole tumor microenvironment. In this context, our goal was to understand if exosomes derived from highly metastatic cell line may influence the behaviour of less aggressive tumor cells and the properties of endhothelium.

Colon cancer exosomeproteomicsSettore BIO/13 - Biologia Applicatatumor microenvironment
researchProduct

Towards the standardization of mitochondrial proteomics: the Italian mt-HPP initiative

2017

The mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the iden…

itlian mt-HPP iniziativeMitochondria standardization enrichment protocol Mitochondrial Human Proteome Projectmitochondrial proteomicBIO/10 - BIOCHIMICAproteomic
researchProduct

Additional File 12:

2018

Figure S7. Anti-proliferative effects of curcumin, imatinib and curcumin+imatinib combination on CML cell viability. Curcumin and imatinib were tested for their anti-proliferative effects on K562 (a) and LAMA84 cells (b). The assays were performed by using curcumin and imatinib singly (using the reported doses) or in combination (20 μM curcumin held constant and imatinib at reported concentrations. In K562 cells combination compound treatments showed significant differences compared to single imatinib treatments for all doses tested (p 1 indicates antagonism. (PPTX 50 kb)

hemic and lymphatic diseasesneoplasms
researchProduct

Additional file 5: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Figure S3. Pearson’s R2 showing the correlation between biological and technical replicates of Curcu-K562 cells. (PPTX 185 kb)

researchProduct

ANTINEOPLASTIC ACTIVITY OF NANOVESICLES ISOLATED BY CITRUS LIMON

2016

The present invention relates to the obtainment of vegetable products showing pharmacological activity and their therapeutic use. In particular the invention refers to vesicles of nanometric dimensions obtained from the juice of plants of the family Rutaceae.

nanovesicles cancer citrus limon
researchProduct

Additional file 1: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Figure S1. Cell growth was measured by MTT assay after 24 h of treatment with increasing doses of curcumin. Each point represents the mean ± SD of three independent experiments. * ≤ 0.05. (PPTX 42 kb)

researchProduct

Additional file 9: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Figure S4. Effects of Curcumin on HIF-1α activity, IPO7 expression and miR22 expression in LAMA84 cells. a Assay of the transcriptional activity of HIF-1α showing that in LAMA84 cells curcumin induced a reduction of HIF-1α activity compared to control cells. The reported values are the mean of three independent experiments. b qPCR (left panel) and representative Western blot (right panel) show that in LAMA84 cells curcumin treatment did not affect HIF-1α at both mRNA and protein level. The values (FOI: Fold of Induction) in the histogram are normalized against GAPDH and are the mean ± SD of three independent experiments. c qPCR demonstrates that in LAMA84 cells curcumin induced a decrease o…

researchProduct

Additional file 1: of The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Supplementary Material and Methods. (DOCX 24Â kb)

researchProduct

Isolation and characterization of Citrus limon L. derived nanovesicles: potential use as antineoplastic agent

2015

We isolated and characterized nanovesicles from edible Citrus limon with size and composition similar to mammalian-derived exosomes. Furthermore we show an in vitro and in vivo anti-proliferative and pro-apoptotic effect of these vesicles. This study opens to the possibility of using this natural plant-derived nanovesicles as antineoplastic agents.

nanovesicles citrus limon
researchProduct

Additional file 4: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Figure S2. Pearson’s R2 showing the correlation between biological and technical replicates of Ctrl-K562 cells. (PPTX 178 kb)

researchProduct

Additional file 7: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Table S4. UpReg Proteins_FunRichGOterms. (XLSX 35 kb)

researchProduct

Additional file 3: of The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Table S1. Data from SWATH-MS Gene Ontology analysis. (XLSX 740Â kb)

researchProduct

Additional file 2: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Table S1. MS Data of Protein ID. (XLSX 2197 kb)

researchProduct

Additional file 6: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Table S3. DownReg Proteins_FunRichGOterms. (XLSX 50 kb)

researchProduct

Additional file 3: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Table S2. SWATH-MS Data. (XLSX 884 kb)

researchProduct

Additional file 8: of SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affec…

2018

Table S5. Regulated Proteins_ClueGO Results. (XLSX 22 kb)

researchProduct

Additional file 4: of The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Figure S2. Effects of DDHD1-expressing cells conditioned medium on DDHD1-silenced cell growth. Cell viability was measured by MTT assay on DDHD1-silenced SW480 cells in the presence of the conditioned medium (CM) of mock cells and DDHD1 overexpressing cells. (TIFF 3275Â kb)

researchProduct

Additional file 2: of The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Figure S1. DDHD1 silencing. To evaluate DDHD1 silencing a. Real-time PCR and b. Western blot analysis were performed on SW480, HCT116, HS5 and HUVEC transfected for 48 or 72Â h with scrambled siRNA or DDHD1 siRNA. (TIFF 6629Â kb)

embryonic structuresneoplasmsdigestive system diseases
researchProduct